V.O. Iemelianov, METHOD FOR EFFECTIVE SEPARATION OF MICROPLASTIC PARTICLES FROM BOTTOM SEDIMENTS

https://doi.org/10.15407/gpimo2024.02.070

V.O. Iemelianov, NAS Corresp. Member, Dr. Sci. (Geol. & Mineral.), Prof., Chief Researcher|
E-mail: volodyasea1990@gmail.com ORCID 0000-0002-8972-0754

Ye.І. Nasiedkіn, PhD (Geol.), Senior Research Scientist
E-mail: nasedevg@ukr.net ORCID 0000-0003-2633-9291

T.S. Kukovska, PhD (Geol. & Mineral.), Senior Research Scientist
E-mail: t.kukovska@gmail.com ORCID 0000-0001-7532-8885

S.M. Dovbysh, Leading Engineer
E-mail: dovbysh@ukr.net ORCID 0000-0002-3542-7472

MorGeoEcoCenter NAS of Ukraine
55b st. Oles Honchar, Kyiv, 01054, Ukraine

METHOD FOR EFFECTIVE SEPARATION OF MICROPLASTIC PARTICLES FROM BOTTOM SEDIMENTS

The study of the distribution of microplastics in the geological component of marine ecosystems, in particular, the detection of the amount of pollution by plastic material, the determination of its types, origin and routes of movement is a relevant direction of research of the scientific world community in recent decades. The SSI "MorGeoEcoCenter of the National Academy of Sciences of Ukraine" within the framework of the international project "Developing Optimal and Open Research Support" for the Black Sea (DOORS) (https://www.doorsblacksea.eu/) conducts research on the distribution of microplastics in the bottom sediments of the shelf areas of the western parts, as well as coastal deposits of the northwestern part of the Black Sea. An important component of the research is the process of sample preparation for laboratory analyses, which determines the qualitative extraction of microplastic particles with preserved shape and size from the mass of bottom sediments. The practice of microplastic’s research in the laboratory of SSI "MorGeoEcoCenter" made it possible to develop equipment for non-contact mixing of bottom sediment samples. The experimental separator created on the basis of a grinding machine allows continuous mixing of sediments, ensuring constant movement of the container with the substance in the horizontal plane and its permanent oscillations with an optimal frequency in the vertical. The non-destructive physical characteristics of oscillations allow the unlimited use of the device for the term that is necessary for the reliable separation of the mass of the bottom sediments of the sample into particles that are unitary in nature and their effective separation by density characteristics in the solution. The size of the grinding platform and the availability of additional elements guarantee the ability to work with containers of various volumes, shapes, and sizes. Further special experimental studies will determine the degree of efficiency of the device and open up the possibility of its involvement in practical work to improve the efficiency of laboratory processing of natural substances and improve the quality of research results.

Keywords: microplastics, bottom sediments, non-destructive separation methods, laboratory equipment.

Bibliography

  1. Andrady A.L. Microplastics in the marine environment. Marine Pollution Bull., 2011. № 62. Р. 1596 – 1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
  2. Andrady A.L. The plastic in microplastics: a review. Marine Pollution Bull., 2017. № 119 (1). Р. 12 – 22. https://doi.org/10.1016/j.marpolbul.2017.01.082
  3. Browne M.A., Crump P., Niven S.J. et al. Accumulations of microplastic on shorelines worldwide: sources and sinks Environ. Sci. Technol., Just Accepted Manuscript, 2011. № 45 (21). Р. 9175 – 9179. https://doi.org/10.1021/es201811s
  4. Browne M.A., Galloway T.S., Thompson R.C. Spatial Patterns of Plastic Debris along Estuarine Shorelines. Environmental Science & Technology, 2010. № 44 (99). Р. 3404 – 3409. https://pubs.acs.org/doi/10.1021/es903784e
  5. Claessens M., Meester S., Van Landuyt L. et al. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bull., 2011. № 62 (10). Р. 2199 – 2204. https://doi.org/10.1016/j.marpolbul.2011.06.030
  6. Claessens M., Van Cauwenberghe L., Vandegehuchte M.B. et al. New techniques for the detection of microplastics in sediments and field collected organisms. Marine Pollution Bull., 2013. № 70 (1 2). Р. 227 – 233. https://doi.org/10.1016/j.marpolbul.2013.03.009
  7. Cooper D.A., Corcoran P. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Marine Pollution Bull., 2010. № 60 (5). Р. 650 – 654. https://doi.org/10.1016/j.marpolbul.2009.12.026
  8. Corcoran P.L., Biesinger M.C., Grifi M. Plastics and beaches: A degrading relationship. Marine Pollution Bull., 2009. № 58 (1). Р. 80 – 84. https://doi.org/10.1016/j.marpolbul.2008.08.022
  9. Galgani F, Hanke G., Werner S. et al. Guidance on Monitoring of Marine Litter in European Seas MSFD Technical Subgroup on Marine Litter. Publications Office of the European Union, 2013. 128 р. https://doi.org/10.2788/99475
  10. Galgani F., Ruiz Orejon Sanchez Pastor L., Ronchi F. et al. Guidance on the Monitoring of Marine Litter in European Seas An update to improve the harmonized monitoring of marine litter under the Marine Strategy Framework Directive. Publications Office of the European Union, 2023. 195 p. https://doi.org/10.2760/59137
  11. Geyer R., Jambeck J.R., Law K.L. Production, use, and fate of all plastics ever made. Science Advances, 2017. № 3 (7). Р. 608 – 612. https://doi.org/10.1126/sciadv.1700782
  12. Goli V.S.N.S., Singh D.N. Effect of ultrasonication conditions on polyethylene microplastics sourced from landfills: A precursor study to establish guidelines for their extraction from environmental matrices. Journal of Hazardous Materials, 2023. № 459 (5). https://doi.org/10.1016/j.jhazmat.2023.132230
  13. Hidalgo-Ruz V., Gutow L., Thompson R.C., Thiel M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science and Technology, 2012. № 46 (6). Р. 3060-3075. https:// doi.org/10.1021/es2031505.
  14. Hoornweg D., Bhada-Tata P. What a waste: a global review of solid waste management. Urban Development Series, 2012. V.15. 116 р.
  15. Imhof H.K., Schmid J., Niessner R. et al. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnology and Oceanography: Methods. V. 10 (7). P. 524 – 537. https://doi.org/10.4319/lom.2012.10.524
  16. Kershaw P.J., Turra A. Galgani F. et al. Guidelines or the monitoring and assessment of plastic litter and microplastics in the ocean Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. Rep. Stud. GESAMP, 2019. № 99, 130 p. https://archimer.ifremer.fr/doc/00585/69677/
  17. Lambert S., Wagner M. Microplastics are contaminants of emerging concern in freshwater environments: an overview. Freshwater Science, 2016. № 36 (2). P. 251 – 268.
  18. Liebezeit G., Dubaish F. Microplastics in Beaches of the East Frisian Islands Spiekeroog and Kachelotplate. Bulletin of Environmental Contamination and Toxicology, 2012. № 89 (1). P. 213 – 217. https://doi.org/10.1007/s00128-012-0642-7
  19. Masura J., Baker J., Foster G. et al. Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48. 2015. P. 39.
  20. McDermid K.J, McMullen T.L. Quantitative Analysis of Small-Plastic Debris on Beaches in the Hawaiian Archipelago. Marine Pollution Bull., 2004. № 48 (7  8). P. 790 – 794. https://doi.org/10.1016/j.marpolbul.2003.10.017
  21. Ng K.L., Obbard J.P. Prevalence of microplastics in Singapore's coastal marine environment. Marine Pollution Bull., 2006. № 52 (7). P. 761 – 767. https://doi.org/10.1016/j.marpolbul.2005.11.017
  22. Nuelle M.-T., Dekiff J.H., Remy D., Fries E. A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution, 2014. V. 184. P. 16 – 169. https://doi.org/10.1016/j.envpol.2013.07.027
  23. Phuong N.N., Poirier L., Quoc T. Q. et al. Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: Location, season and/or mode of life? Marine Pollution Bull., 2018. № 129 (2). P. 664 – 674. https://doi.org/10.1016/j.marpolbul.2017.10.054 https://www.sciencedirect.com/science/article/abs/pii/S0025326X17309001
  24. Plastics – the Facts. Plastics Europe. 2018. 60 р. https://plasticseurope.org/wp-content/uploads/2021/10/2018-Plastics-the-facts.pdf
  25. Pojar I., Stănică A., Stock F. et al. Sedimentary microplastic concentrations from the Romanian Danube River to the Black Sea. Scientific Reports, 2021. V. 11 (1). https://doi.org/10.1038/s41598-021-81724-4, www.nature.com/scientificreports
  26. Thompson R.C., Olsen Y.S., Mitchell R. P. et al. Lost at Sea: Where Is All the Plastic? Science, 2004. V. 304, № 5672. P. 838. https://doi.org/10.1126/science.1094559
  27. Wagner J., Wang Z.-M., Ghosal S., Rochman C. Novel method for the extraction and identification of microplastics in ocean trawl and fish gut matrices. Analytical Methods, 2017. V. 9 (9). P. 1479 – 1490. https://doi.org/10.1039/c6ay02396g

PDF

English