https://doi.org/10.15407/gpimo2022.03.003
V.O. Iemelianov, NAS Corresp. Member, Dr. Sci. (Geol. & Mineral.), prof., Chief Researcher
e-mail: eva@nas.gov.ua
ORCID 0000-0002-8972-0754
P.O. Kiriakov, PhD (Geol. & Mineral.), Senior Researcher
e-mail: paoloee@ukr.net
O.M. Rybak, PhD (Geol. & Mineral.), Senior Researcher
ORCID 0000-0001-5746-7259
O.O. Parishev, PhD (Geol. & Mineral.), Senior Researcher
e-mail: paryshev1974@gmail.com
ORCID 0000-0003-1318-9650
M.O. Maslakov, Phd (Geol. & Mineral.), Senior Researcher, Leading Researcher
e-mail: nikalmas6@gmail.com
ORCID 0000-0001-9754-3033
S.V. Klochkov, PhD student
e-mail: sklochkov@gmail.com
ORCID 0000-0002-5369-0573
MorGeoEcoCenter NAS of Ukraine
55b st. Oles’ Honchar, Kyiv, 01054, Ukraine
BRIEF RESEARCH HISTORY AND MODERN KNOWLEDGE OF THE PHENOMENON OF SUBMARINE GROUNDWATER DISCHARGE ON THE SEA AND OCEAN SHELVES
Groundwater is widely spread both on land and under seas and oceans. Today, hydrogeologists and oceanologists recognize the potentially significant contribution of submarine groundwater discharge to coastal areas. The term submarine groundwater discharge (SGD) is commonly used to describe sources below sea level. It should be noted that submarine waters also include the sources located within tidal (littoral) zones, although they get underwater only during high tides. Observation of submarine discharge showed its significant impact on the ecological condition of coastal structures. Along with the percolation of underground water along most of the world’s coastlines, a significant amount of fresh water and substances dissolved in it is spread across large areas. However, the role of such a phenomenon as submarine discharge for coastal communities is practically not considered. The article gives examples from many literary sources, highlighting the importance of submarine discharge sources for local population in their everyday activities for many centuries. This is a source of drinking water, hygienic product, water for agriculture, fishing, shipping, culture, and tourism.
In many parts of the world, there are sources of submarine discharge, which have a unique shape and are considered important only because of their exceptional nature and the habitat of freshwater organisms. These examples confirm the uniqueness of such a phenomenon of live activity of coastal communities. As a result, there is a necessity for a comprehensive approach to the study of submarine discharge, which is relevant not only from the point of view of changes in coastal environment but also from the point of view of the global circulation of water and substances on Earth.
Keywords: submarine discharge, littoral waters, economic activity.
References
1. Babіnec' A. Ye., Mitropol's'kij O. Yu., Iemelianov V.O., Kіr’yakov P. O. Mors'ka gіdrogeologіya — nova galuz' geologіchnyh znan'. Vіsnik AN URSR. 1982. № 12. S. 79—83.
2. Babinec A.E., Emel'yanov V.A., Kir'yakov P.A. Problemy poiskov zon submarinnoj razgruzki podzemnyh vod (na primere CHernomorskogo shel'fa Ukrainy). Devyatoe soveshchanie po podzemnym vodam Sibiri i Dal'nego Vostoka. Irkutsk—Petropavlovsk-Kamchatskij, 1979. S. 120—121.
3. Babinec A. E., Emel'yanov V.A., Kir'yakov P.A. Issledovaniya uslovij submarnoj razgruzki podzemnyh vod na primere CHernomorskogo poberezh'ya Kryma. ІV Vsesoyuzn. shkola morskoj geologii. Moskva: Nauka, 1980. S. 5—7.
4. Kir'yakov P.A. Gidrogeologicheskie osobennosti Gornogo Kryma i prilegayushchego shel'fa. Preprint Instituta geologicheskih nauk AN USSR. Kiev, 1981. 53 s.
5. Kir'yakov P.A. Usloviya submarinnoj razgruzki podzemnyh vod Gornogo Kryma: avtorefer. diss. … kand. geol.-min. nauk, Kiev, 1981. 22 s.
6. Ahmad ibn Mаjid, A.-S., Tibbetts, G.R. Arab Navigation in the Indian Ocean Before the Coming of the Portuguese: Being a Translation of kitаb al – Fawа id fi usul al - bahr wal – qawа id of Ahmad b. Mаjid al - Najdi; Together with an Introduction on the History of Arab Navigation. Notes on the Navigational Techniques and on the Topography of the Indian Ocean and a Glossary of Navigational Terms. XXVI. Oriental Translation Fund Publications. Royal Asiatic Society of Great Britain and Ireland. London, 1971. P. 614.
7. Andric M. Ronjenje u Hrvatskoj. Zagreb: Zar Herc, 2009. 251 p.
8. Arnov B. Fish Florida: Saltwater. VIII. Houston: Gulf Pub. Co., 1991. 232 p.
9. Bakken T.H., Ruden F., Mangset L.E. Submarine groundwater: a new concept for the supply of drinking water. Water Resour. Manag. 2012. 26 (4). P. 1015—1026. https://doi.org/10.1007/s11269-011-9806-1
10. Beusen A.H.W., Slomp C.P., Bouwman A.F. Global land — ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge. Environ. Res. Lett. 2013. 8 (3). P. 34—35. https://doi.org/10.1088/1748-9326/8/3/034035
11. Burnett K., Wada C., Endo A., Taniguchi M., The economic value of groundwater in Obama. J. Hydrol. Reg. Stud. 2015.
12. Carvalho L.F., Rocha C., Fleming A., Veiga-Pires C., Anibal J. Interception of nutrient rich submarine groundwater discharge seepage on European temperate beaches by the acoel flatworm, Symsagittifera roscoffensis. Mar. Pollut. Bull. 2013. 75 (1—2). P. 150—156. https://doi.org/10.1016/j.marpolbul.2013.07.045
13. Cole J.J., Prairie Y.T., Caraco N.F., McDowell W.H., Tranvik L.J., Striegl R.G., Duarte C.M., Kortelainen P., Downing J.A., Middelburg J.J., Melack J. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems. 2007. 10 (1). P. 171—184. https://doi.org/10.1007/s10021-006-9013-8
14. Costa O.S. Anthropogenic nutrient pollution of coral reefs in Southern Bahia, Brazil. Braz. J. Oceanogr. 2007. 55 (4), P. 265—279. https://doi.org/10.1590/S1679-87592007000400004
15. Cuet P., Naim O., Faure G., Conan J.Y. Nutrient-rich groundwater impact on benthic communities of la Saline fringing reef (Reunion Island, Indian Ocean): preliminary results /Choat J.H., Barnes D., Borowitzka M.A./ Contributed Papers. 6th International Coral Reef Symposium Executive Committee. Australia, Townsville. (8th-12th August 1988). V. 2. P. 207—212.
16. Dimova N.T., Burnett W.C., Speer K. A natural tracer investigation of the hydrological regime of Spring Creek Springs, the largest submarine spring system in Florida. Cont. Shelf Res. 2011. 31 (6). P. 731—738. https://doi.org/10.1016/j.csr.2011.01.010
17. Dimova N.T., Swarzenski P.W., Dulaiova H., Glenn C.R. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water — seawater interface in two Hawaiian groundwater systems. J. Geophys. Res. Oceans. 2012. V. 117. C02012. https://doi.org/10.1029/2011JC007509
18. Fineout G. From ex-Governor, a Novel Plan Springs Forth. Tallahassee Democrat, Tallahassee.
19. Fischer W.A., Landis G.H., Moxham R.M., Polcyn F. Infrared surveys of Hawaiian volcanoesaerial surveys with infrared imaging radiometer depict volcanic thermal patterns - structural features. Science. 1964. 146 (364). P. 733. https://doi.org/10.1126/science.146.3645.733
20. Fleury P., Bakalowicz M., de Marsily G. Submarine springs and coastal karst aquifers: a review. J. Hydrol. 2007. 339 (1—2), P. 79—92. https://doi.org/10.1016/j.jhydrol.2007.03.009
21. Gilli E. Deep speleological salt contamination in Mediterranean karst aquifers: perspectives for water supply. Environ. Earth Sci. 2015. 74 (1), P. 101—113. https://doi.org/10.1007/s12665-015-4042-2
22. Greskowiak J. Tide-induced salt-fingering flow during submarine groundwater discharge. Geophys. Res. Lett. 2014. 41 (18). P. 6413—6419. https://doi.org/10.1002/2014GL061184
23. Hata M., Sugimoto R., Hori M., Tomiyama T., Shoji J. Occurrence, distribution and prey items of juvenile marbled sole Pseudopleuronectes yokohamae around a submarine groundwater seepage on a tidal flat in southwestern Japan. J. Sea Res. 2016. 111. P. 47—53. https://doi.org/10.1016/j.seares.2016.01.009
24. Holliday D., Stieglitz T.C., Ridd P.V., Read W.W. Geological controls and tidal forcing of submarine groundwater discharge from a confined aquifer in a coastal sand dune system. J. Geophys. Res. Oceans. 2007. 112 (C4). P. 10. https://doi.org/10.1029/2006JC003580
25. Hosono T., Ono M., Burnett W.C., Tokunaga T., Taniguchi M., Akimichi T. Spatial distribution of submarine groundwater discharge and associated nutrients within a local coastal area. Environ. Sci. Technol. 2012. 46 (10), P. 5319—5326. https://doi.org/10.1021/es2043867
26. Humboldt A.V., Thrasher J.S. 1856. The Island of Cuba. Derby & Jackson, New York: IPCC, 2013. P. 397. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. 1535 p.
27. Hydrologic and Ecologic Inventories of the Coastal Waters of West Hawaii. Water Resources Research Center. University of Hawaii at Manoa, Honolulu / Kay EA, Lau LS, Stroup ED, Dollar SJ, Fellows DP, Young RHF / 1977. WRRC technical report. 105 p.
28. Judd A.G., Hovland, M., Seabed Fluid Flow: The Impact of Geology, Biology and the Marine Environment. Cambridge University Press, Cambridge; New York, 2007. 475 p. https://doi.org/10.1017/CBO9780511535918
29. Kaleris V. Submarine groundwater discharge: effects of hydrogeology and of near shore surface water bodies. J. Hydrol. 2006. 325 (1—4). P. 96—117. https://doi.org/10.1016/j.jhydrol.2005.10.008
30. Kohout F.A. Ground-water flow and the geothermal regime of the floridian plateau. Hydrology, 1966. 26. P. 391—413.
31. Kwon E.Y., Kim G., Primeau F., Moore W.S., Cho H.-M., DeVries T., Sarmiento J.L., Charette M.A., Cho Y.-K. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophys. Res. Lett. 2014. 41. https://doi.org/10.1002/2014GL061574
32. Lapointe B.E., Oconnell J.D., Garrett G.S. Nutrient couplings between on-site sewage disposal systems, Groundwaters, and nearshore surface waters of the Florida keys. Biogeochemistry. 1990. 10 (3). P. 289—307. https://doi.org/10.1007/BF00003149
33. Lorenzen J. (Ed.) Geneue Beschreibung der wunderbaren Insel Nordmarsch: 1749/Lorenz Lorenzen. Ver`ffentlichungen des Nordfriisk Instituut. 1982. V. 62. Helmut Buske Verlag, Hamburg.
34. Lubis R.F., Bakti H. Mata Air Tawar Di Tengah Laut. Geomagz. 2013. 3 (2). P. 38—42.
35. Masciopinto C., Liso I.S. Assessment of the impact of sea-level rise due to climate change on coastal groundwater discharge. Sci. Total Environ. 2016. P. 569—570, 672—680. https://doi.org/10.1016/j.scitotenv.2016.06.183
36. Mejias M., Ballesteros B.J., Anton-Pacheco C., Dominguez J.A., Garcia-Orellana J., Garcia-Solsona E., Masque P. Methodological study of submarine ground-water discharge from a karstic aquifer in the Western Mediterranean Sea. J. Hydrol. 2012. 464. P. 27—40. https://doi.org/10.1016/j.jhydrol.2012.06.020
37. MilanoviJ P.T. Water Resources Engineering in Karst. CRC Press, Boca Raton, 2004. FL. 312 p.
38. Moosdorf N., Stieglitz T., Waska H., Durr H.H., Hartmann J. Submarine groundwater discharge from tropical islands: a review. Grundwasser. 2015. 20 (1). P. 53—67. https://doi.org/10.1007/s00767-014-0275-3
39. Parenzan P. Il Mar Piccolo e il Mar Grande di Taranto. Thalassia Salentina. 1969. 3. P. 19—36.
40. Perissinotto R., Bornman T.G., Steyn P.P., Miranda N.A.F., Dorrington R.A., Matcher G.F., Strydom N., Peer N. Tufa stromatolite ecosystems on the South African south coast. S. Afr. J. Sci. 2014. 110 (9—10). P. 89—96. https://doi.org/10.1590/sajs.2014/20140011
41. Pironet F.N., Jones J.B. Treatments for ectoparasites and diseases in captive Western Australian dhufish. Aquac. Int. 2000. 8 (4). P. 349—361. https://doi.org/10.1023/A:1009257011431
42. Povinec P.P., Burnett W.C., Beck A., Bokuniewicz H., Charette M., Gonneea M.E., Groening M., Ishitobi T., Kontar E., Kwong L.L.W., Marie D.E.P., Moore W.S., Oberdorfer J.A., Peterso R., Ramessur, R., Rapaglia J., Stieglitz T., Top Z. Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA — UNESCO intercomparison exercise at Mauritius Island. J. Environ. Radioact. 2012. 104. P. 24—45. https://doi.org/10.1016/j.jenvrad.2011.09.009
43. Rausch R., Dirks H., Kallioras A., Schuth C. The riddle of the springs of Dilmun — does the Gilgamesh epic tell the truth? Groundwater. 2014. 52 (4). P. 640—644. https://doi.org/10.1111/gwat.12214
44. Redding J.E., Myers-Miller R.L., Baker D.M., Fogel M., Raymundo L.J., Kim K. Link between sewage-derived nitrogen pollution and coral disease severity in Guam. Mar. Pollut. Bull. 2013. 73 (1). P. 57—63. https://doi.org/10.1016/j.marpolbul.2013.06.002
45. Russoniello C.J., Fernandez C., Bratton J.F., Banaszak J.F., Krantz D.E., Andres A.S., Konikow L.F., Michael H.A. Geologic effects on groundwater salinity and discharge into an estuary. J. Hydrol. 2013. 498. P. 1—12. https://doi.org/10.1016/j.jhydrol.2013.05.049
46. Sadler H.E., Serson H.V. An unusual polynya in an Arctic Fjord / Freeland H., Farmer D., Levings C. Fjord Oceanography. NATO Conference. Series Springer. US. 1980. P. 299—304. https://doi.org/10.1007/978-1-4613-3105-6_23
47. Stefanon A. Capture and Exploitation of Submarine Springs. Oceanology International, Brighton, UK, 1972. P. 427—430.
48. Stieglitz T. Submarine groundwater discharge into the near-shore zone of the Great Barrier Reef, Australia. Mar. Pollut. Bull. 2005. 51 (1—4). P. 51—59. https://doi.org/10.1016/j.marpolbul.2004.10.055
49. Stieglitz T.C., van Beek P., Souhaut M., Cook P.G. Karstic groundwater discharge and seawater recirculation through sediments in shallow coastal Mediterranean lagoons, determined from water, salt and radon budgets. Mar. Chem. 2013. 156. P. 73—84. https://doi.org/10.1016/j.marchem.2013.05.005
50. Taniguchi M., Burnett W.C., Cable J.E., Turner J.V. Investigation of submarine groundwater discharge. Hydrol. Process. 2002. 16 (11). P. 2115—2129. https://doi.org/10.1002/hyp.1145
51. Viso R., McCoy C., Gayes P., Quafisi D. Geological controls on submarine groundwater discharge in Long Bay, South Carolina (USA). Cont. Shelf Res. 2010. 30 (3—4), P. 335—341. https://doi.org/10.1016/j.csr.2009.11.014
52. Wiese M. Villagers Enjoy Free Fresh Water Supply. The Fiji Times, Suva, Fiji. 1946.
53. Williams M.O. Bahrein: port of pearls and petroleum. Nat. Geo. Mag. 2009. 89. P. 198—210.
54. Zektser I.S., Loaiciga H.A. Groundwater fluxes in the global hydrologic-cycle — past, present and future. J. Hydrol. 1993. 144 (1—4). P. 405—427. https://doi.org/10.1016/0022-1694(93)90182-9
55. Zektzer I.S., Ivanov V.A., Meskheteli A.V. The problem of direct groundwater discharge to the seas. J. Hydrol. 1973. 20 (1). P. 1—36. https://doi.org/10.1016/0022-1694(73)90042-5