Ye.P. Gurov. IMPACT STRUCTURES IN SEAS AND OCEANS

Англійська

https://doi.org/10.15407/gpimo2016.01.005

Geology and Mineral Resources of World Ocean 2016, 12 (1): 5-18

Ye.P. Gurov

Institute of Geology of NAS of Ukraine, Kiev

IMPACT STRUCTURES IN SEAS AND OCEANS

Recently 188 impact structures were discovered on the Earth surface, and their number continuously increased. 6 craters were formed in marine conditions, and now they are completely or partially occur under the sea surface. The underwater origin and the later removal to the land surface by tectonic processes was determined for 21 craters from the whole number of the continental impact structures. While oceans cover about 71 % of the Earth, the underwater origin was determined for 14 % of impact craters only. Such low number of underwater craters is due to the young age of the ocean floor and absorption of impact energy of the asteroids by the water column, as well as the difficulty of discovery of underwater craters.

Key words: impact structure, asteroid, tsunami, suspension flow, breccia.

REFERENCES

1. Gurov E.P., Gozhik P.F. Impaktnoe krateroobrazovanie v istorii Zemli. K., 2006. 217 s.
 
2. Gurov E.P., Gozhik P.F. Obrazovanie kratera Chiksulub i melpaleogenovoe massovoe vyimiranie. Geol. zhurn. 2005. # 1. S. 39—49.
 
3. Gurov E.P., Gurova E.P. Geologicheskoe stroenie i veschestvennyiy sostav porod impaktnyih struktur. K.. Nauk. dumka, 1991. 160 s.
 
4. Gurov E.P., Gurova E.P., Yamnichenko A.Yu., Chernenko Yu.A. Zapolnyayuschiy kompleks i zakraternyie otlozheniya Obolonskoy impaktnoy strukturyi. Geol. zhurn. 2007. # 4. S. 48—59.
 
5. Impaktnyie krateryi na rubezhe mezozoya i kaynozoya. Red. V.L. Masaytis. L.. Nauka, 1990. —185 s.
 
6. Masaytis V.L., Danilin A.N., Maschak M.S. i dr. Geologiya astroblem. L.. Nedra, 1980. 231 s.
 
7. Masaytis V.L., Danilin A.N., Karpov G.M., Rayhlin A.I. Karlinskaya, Obolonskaya, Rotmstrovskaya astroblemyi v Evropeyskoy chasti SSSR. Dokl. AN SSSR. 1976. 230, # 1. S. 174—177.
 
8. Maschak M.S. Morfologiya i struktura Karskoy i UstKarskoy astroblem. Impaktnyie krateryi na rubezhe mezozoya i kaynozoya. Red. V.L. Masaytis. L.. Nauka, 1990. S. 37—55 s.
 
9. Abelis A., Plado J., Pesonen L.J., Lehtinen M. The impact cratering record of Fennoscandia a close look at the database. Impacts in Precambrian shields. Eds. J. Plado, L.J. Pesonen. Berlin. Springer, 2002. P. 1—58.
 
10. Adatte T., Keller G., Burns S. et al. Paleoenvironment across the CretaceousTertiary transition in eastern Bulgaria. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Eds. C. Koeberl, K.G. MacLeod. Geol. Soc. Amer. Spec. Paper. 2002. 356. P. 231—251.
 
11. Alvarez L.W., Alvarez W., Asaro F., Michel H.V. Extraterrestrial cause for the CretaceousTertiary Extinction. Science. 1980. 208. P. 1095—1108.
https://doi.org/10.1126/science.208.4448.1095
 
12. Barton R., Bird K., HernBndez J.G. et al. Highimpact reservoirs. Oilfield Review. Winter 2009.2010. 21, # 4. P. 14—29.
 
13. Belcher C.M. Impacts and wildfires an analysis of the KT event. Biological processes associated with impact events. Eds. C. Cockell, C. Koeberl, I. Gilmour. Berlin. Springer, 2006. P. 221—243.
https://doi.org/10.1007/3-540-25736-5_10
 
14. Bourgeois J., Hansen T.A., Wiberg P.L., Kauffman E.G. A tsunami deposit at the CretaceousTertiary boundary in Texas. Science. 1988. 241. P. 567—570.
https://doi.org/10.1126/science.241.4865.567
 
15. Claeys P., Kiessling W. Alvarez W. Distribution of Chicxulub ejecta at the CretaceousTertiary boundary. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geol. Soc. Amer. Spec. Paper. 2002. 356. P. 55—68.
 
16. Donofrio R.R. Survey of hydrocarbonproducing impact structures in North America: exploration results to date and potential for discovery in Precambrian basement rocks. Ames Structure in Northwest Oklahoma and Similar Features: Origin and Petroleum Production. Oklahoma. The University of Oklahoma Press, 1997. P. 17—29.
 
17. Dypvik H. Marine impacts and their consequences. Encyclopedia of marine geosciences. Springer Science Business Media Dordrecht, 2015. DOI 10.1007.9789400766440_694. P. 1—10.
 
18. Dypvik H., Burchell M.J., Claeys P. Impacts in marine and icy environments a short revive. Cratering in marine environments and on ice. Eds. H. Dypvik, M. Burchell, P. Claeys. Berlin. Springer, 2004. P. 1—21.
https://doi.org/10.1007/978-3-662-06423-8
 
19. Dypvik H., Jansa L.F. Sedimentary signatures and processes during marine bolide impacts: a review. Sedimentary Geology. 2003. 161. P. 309—317.
https://doi.org/10.1016/S0037-0738(03)00135-0
 
20. Dypvik H., Kalleson E. Mechanisms of late synimpact to early postimpact crater sedimentation in marinetarget impact structures. Large meteorite impacts and planetary evolution III. Eds. R.L. Gibson, W.U. Reimold. Geol. Soc. Amer. Spec. Paper, 2010. 465. P. 301—318.
https://doi.org/10.1130/2010.2465(18)
 
21. Earth Impact Database. [Elektron. resurs]. Rezhim dostupa. www.passc.net. EarthImpactDatabase. 2015.
 
22. Gersonde R., Kyte F.T., Bleil U. et al. Geological record and reconstruction of the Late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature. 1997. 390. P. 357—363.
https://doi.org/10.1038/37044
 
23. Gudlaugsson S.T. Large impact crater in the Barents Sea. Geology. 1993. 21. P. 291—294.
https://doi.org/10.1130/0091-7613(1993)021<0291:LICITB>2.3.CO;2
 
24. Gurov E., Gurova E., Chernenko Y., Yamnichenko A. The Obolon impact structure, Ukraine, and its ejecta deposits. Meteoritics & Planetary Sciences. 2009. 44, # 3. P. 389—404.
https://doi.org/10.1111/j.1945-5100.2009.tb00740.x
 
25. Hildebrand A.R., Penfild G.T., Kring D.A. et al. Chicxulub crater: A possible CretaceousTertiary Boundary impact crater on the Yucatan Peninsula, Mexico. Geology. 1991. 19. P. 867—871.
https://doi.org/10.1130/0091-7613(1991)019<0867:CCAPCT>2.3.CO;2
 
26. Hildebrand A.R., Pilkington M., OrtizAleman C. et al. Mapping Chicxulub crater structure with gravity and seismic reflection data. Meteorites: Flux with Time and Impact Effects. Eds. M.M. Grady, R. Hutchison, G.J. McCall, D.A. Rothery; Geological Society. London. Special Publications, 1998. 140. P. 155—176.
 
27. Jourdan F., Reimold W.U., Deutsch A. Dating Terrestrial impact structures. Elements. 2012. 8. P. 49—53.
https://doi.org/10.2113/gselements.8.1.49
 
28. King Jr. D. T., Thornton L., Petruny N., Petruny L.W. Structurefilling sediments of the Wetumpka marinetarget impact structure. Cratering in marine environments and on ice. Eds.H. Dupvik, M. Burchell, P. Claeys. Berlin. Springer, 2004. P. 97—113.
https://doi.org/10.1007/978-3-662-06423-8_6
 
29. King Jr. D.T., Neathery T.L., Petruny L.W. et al. Shallow marineimpact origin for the Wetumpka structure (Alabama, USA). Earth and Planetary Science Letters. 2002. 202. P. 541—549.
https://doi.org/10.1016/S0012-821X(02)00803-8
 
30. Koeberl C., Poag C.W., Reimold W.U., Brandt D. Impact origin of the Chesapeake Bay structure and the source of the North American tektites. Science. 1996. 271. P. 1263—1266.
https://doi.org/10.1126/science.271.5253.1263
 
31. Kyte F.T. A meteorite from the Cretaceous. Tertiary boundary. Nature. 1998. 396. P. 237—239.
https://doi.org/10.1038/24322
 
32. Kyte F.T. Composition of impact melt debris from the Eltanin impact strewn field, Bellinghausen Sea. Deepsea research II. 2002. 49. P. 1029—1047.
https://doi.org/10.1016/S0967-0645(01)00140-0
 
33. Love D.R., Byerly G.R., Asaro F., Kyte F.J. Geological and geochemical record of 3400millionyearold Terrestrial meteorite impact. Science. 1989. 245. P. 959—962.
https://doi.org/10.1126/science.245.4921.959
 
34. Margolis S.V., Claeys P., Kyte F.T. Microtektites, microcrystites and spinels from a late Pliocene asteroid impact in the Southern Ocean. Science. 1991. 251. P. 1594—1597.
https://doi.org/10.1126/science.251.5001.1594
 
35. Matsui T., Imamura F., Tajika E. et al. Generation and propagation of a tsunami from the CretaceousTertiary impact event. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geol. Soc. Amer. Spec. Paper. 2002. 356. P. 69—77.
 
36. Montanari A., Koeberl C. Impact stratigraphy. The Italian record. Lecture notes in Earth Sciences. Berlin. Springer, 2000. 93. 454 p.
 
37. Morgan J., Warner M., Brittan J. et al. Size and morphology of the Chicxulub impact crater. Nature. 1999. 390. P. 472—476.
https://doi.org/10.1038/37291
 
38. Morgan J., Warner M., Grieve R.A.F. Geophysical constrains on the size and structure of the Chicxulub impact crater. Catastrophic Events and Mass Extinctions: Impact and Beyond. Geol. Soc. Amer. Spec. Paper. 2002. 356. P. 39—46.
 
39. Nazarov M.A., Badjukov D.D., Alekseev A.S. The Kara structure as a possible K.T impact site. Lunar and Planetary Science Conference XXIII (abstracts). 1992. P. 969—970.
 
40. Norris R.D., Firth J.V. Mass wasting of Atlantic continental margins following the Chicxulub impact event. Catastrophic Events and Mass Extinctions: Impact and Beyond. Geol. Soc. Amer. Spec. Paper. 2002. 356. P. 79—95.
 
41. Ocampo C., Pope K.O., Fischer A.G. Ejecta Blanket Deposits of the Chicxulub Crater from Albion Island, Belize. The CretaceousTertiary Event and Other Catastrophes in Earth History. Eds. G. Ryder, D. Fastovsky, S. Gartner. Geol. Soc. Amer. Spec. Paper. 1996. 307. P. 75—88.
 
42. Orm` J., Lindstr`m M. When a cosmic impact strikes the sea bed. Geological Magazine. 2000. 137. P. 67—80.
https://doi.org/10.1017/S0016756800003538
 
43. Poag C.W., Koeberl C., Reimold U.W. The Chesapeake Bay crater impact. Berlin. Springer, 2004. 522 p.
https://doi.org/10.1007/978-3-642-18900-5
 
44. Rampino M.R., Haggerty B.M. Impact crises and mass extinctions: A working hypothesis. The CretaceousTertiary Event and Other Catastrophes in Earth History. Geol. Soc. Amer. Spec. Paper. 1996. 307. P. 11—30.
 
45. Schulte P. and 40 coauthors. The Chicxulub asteroid impact and mass extinction at the CretaceousPaleogene boundary. Science. 2010. 327. P. 1214—1218.
https://doi.org/10.1126/science.1177265
 
46. Sharpton V.L., Marin L.E., Carney J.L. et al. A model of the Chicxulub impact basin based on evaluation of geophysical data, well logs, and drill core samples. The CretaceousTertiary Event and Other Catastrophes in Earth History. Geol. Soc. Amer. Spec. Paper.— 1996. 307. P. 55—74.
 
47. Shukolukov A., Kyte F. T., Lugmair G.W. The oldest impact deposits on Earth first confirmation of an Extraterrestrial component. Impacts and the early Earth. Eds. I. Gilmour, C. Koeberl. Lecture notes in Earth sciences. Berlin. Springer, 2000. 91. P. 99—116.
https://doi.org/10.1007/BFb0027758
 
48. Shuvalov V., Dypvik H. Ejecta formation and crater development of the Mjolnir impact. Meteoritics and Planetary Sciences. 2004. 39. P. 467—479.
https://doi.org/10.1111/j.1945-5100.2004.tb00105.x
 
49. Smit J. The global stratigraphy of the CretaceousTertiary boundary impact ejecta. Annual Review Earth and Planetary Sciences. 1999. 27. P. 75—113.
https://doi.org/10.1146/annurev.earth.27.1.75
 
50. Smit J., Roep T.B., Alvarez W. et al. Coarsegrained clastic sandstone complex at the K.T boundary around the Gulf of Mexico: Deposition by tsunami waves induced by the Chicxulub impact?. The CretaceousTertiary Event and other Catastrophes in Earth History. Geol. Soc. Amer. Spec. Paper. 1996. 307. P. 151—182.
 
51. Suuroja S., Suuroja K. The Neugrund marine impact structure (Gulf of Finland, Estonia). Cratering in marine environments and on ice. Eds. H. Dypvik, M. Burchell, P. Claeys. Berlin. Springer. 2004. P. 75—95.
https://doi.org/10.1007/978-3-662-06423-8_5
 
52. Suuroja K., Suuroja S. The Neugrund meteorite crater on the seafloor of the Gulf of Finland, Estinia. BALTICA. 2010. 23, # 1. P. 47—58.
 
53. Toon O.B., Zahnle K., Morrison D. et al. Environmental perturbations caused by the impacts of asteroids and comets. Reviews of Geophysics. 1997. 35, # 1. P. 41—78.
https://doi.org/10.1029/96RG03038
 
54. Trieloff M., Deutsch A. The age of the Kara impact structure? Russia. Meteoritics & Planetary Sciences. 1988. 33. P. 361—372.
https://doi.org/10.1111/j.1945-5100.1998.tb01640.x
 
55. Tsikalas F., Faleide J.I. Nearfield erosional features at the Mjolnir impact crater. Cratering in marine environments and on ice. Eds. H. Dypvik, M. Burchell, P. Claeys. Berlin. Springer. 2004. P. 39—55.
https://doi.org/10.1007/978-3-662-06423-8_3
PDF: