V.V. Gordienko, L.Ya. Gordienko. ON PT CONDITIONS IN MANTLE MAGMATIC CHAMBERS BENEATH THE ARCTIC AND OTHER OCEANS

English

V.V. Gordienko, L.Ya. Gordienko
Institute of Geophysics of NAS of Ukraine, Kyiv
ON PT CONDITIONS IN MANTLE MAGMATIC CHAMBERS BENEATH THE ARCTIC AND OTHER OCEANS
The geological and geophysical data that indicates oceanization of Arctic ocean crust were analysed. The investigation of the PT-parameters of magma in the mantle of thisand other oceans is conducted. They are about 25 km and 1150 °C, 55 km and 1200 °C, 90 km and 1300 °C, 145 km and 1500 °C, 215 km and 1700 °C. The results are consistent with the advection-polymorphic hypothesis of deep processes.
Key words: mantle of the oceans, deep processes, magma sources, PT-parameters.
REFERENCES
1. Avdeyko GP, Paluyeva AA, Kuvikas O.V. Adakites in subduction zones of the Pacific ring: a review and
analysis of geodynamic conditions of formation. Vestnik KRAUNTS. Earth sciences. 2011. 1, no. 17. S. 45-60.
2. Artyushkov EV Continental crust on the Lomonosov ridge, Mendeleev's uplift and in the basin Makarov. Formation of deep-sea depressions in the Neogene. Geology and geophysics. 2010. 11. P. 1515-1530.
3. Bogdanov N.A. Tectonics of the Arctic Ocean. Geotectonics. 2004. 3. P. 13-30.
4. Gordienko V.V. Processes in the Earth's tectonosphere (Advection-polymorphic hypothesis). Saarbrhcken: LAP. 2012. 256 c.
5. Gordienko VV, Gordienko L.Ya. On RT conditions in mantle magmatic foci near the Pacific Ocean Geology and mineral resources of the world ocean. 2013. 2. P. 47-63.
6. Gordienko VV, Gordienko L.Ya. On RT conditions in mantle magmatic foci near the Atlantic ocean Geology and minerals of the world ocean. 2013. 3. P. 76-90.
7. Gordienko VV, Gordienko L.Ya. On RT conditions in mantle magmatic foci near the Indian ocean Geology and minerals of the World Ocean. 2013. 4. P. 63-78.
8. Dawson D., James D., Paslik K. et al. Ultrabasic potassium magmatism and continental Rift formation in the north of central Tanzania: communication with increased heat flow Geology and geophysics. 1997. 1. P. 67-77.
9. Kuzmichev AB, Goldyrev AE Manifestations of permutriose trap magmatism on the island Belkovsky (Novosibirsk Islands) Geology and Geophysics. 2007. 2. P. 216-228.
10. Litasov K.D. Physicochemical conditions of melting of the earth's mantle in the presence of volatile components 
(according to experimental data). Author's abstract. dis. doc.geol.-min.nauk. Novosib. 2011. 30 with.
11. Magmatic rocks. The main rocks are Red. E.V. Sharkov. M .: Nedra. 1985. 488 p.
12. Morozov AF, Petrov OV, Shokalsky S.P. New geological data substantiating The continental nature of the region of the Central Arctic uplifts. Regional geology and metallogeny. 2013. 53. P. 18-26.
13. Nikolaev GS, Ariskin AA Burakovo-Aganozero stratified massif of Zaonezhie: II. Structure edge group and estimation of the composition of the parent magma by geochemical thermometry Geochemistry. 2005. 7. P. 712-732.
14. Svetov S.A., Smolkin V.F. Model PT-conditions for the generation of high-magnesian magmas of the Precambrian Fennoscandian shield Geochemistry. 2003. 8. P. 879-892.
15. Silantyev SA, Bazylev VA, Klitgord K. et al. Material composition of the third layer of the oceanic crust
North Atlantic (40-51 ° N) Geochemistry. 1992. 12. P. 1415- 1435.
16. Sobolev VS, Sobolev VN New evidence of deep immersion of eclogitized rocks of the Earth's crust Dokl. AN SSSR. 1980. Vol. 250. 3. P. 683-685.
17. Suschevskaya NM, Cherkashov GA, Baranov BV The features of tholeiitic magmatism in conditions
ultra-slow spreading on the example of the Knipovich Ridge Geochemistry. 2005. 3. P. 254-274.
18. Suschevskaya NM, Korago EA, Belyatsky BV Geochemical features of Neogene magmatism
island of Spitsbergen Geochemistry. 10. 10. P. 1027-1040.
19. Usenko SV Features of the structure of the Earth's crust and upper mantle of the North Atlantic according to
Explosive seismology Comparative tectonics of continents and oceans. Moscow: Moscow State University of the Academy of Sciences of the USSR. 1987. P.52-70.
20. Ariskin A.A. Phase equilibria modeling in igneous petrology use of CONGMAT model for simulating fractionation of ferro-basaltic magmas and the genesis of high-aluminium basalt J. Volc. Geoth.Res. 1999. v.90. P. 115-162.
21. Bryant J., Yogodzinski G.M., Churikova T.G. Melt-mantle interactions beneath the Kamchatka arc: Evidence from ultramafic xenoliths from Shiveluch volcano Geochem. Geophys.Geosyst., 8, Q04007, doi: 10.1029 / 2006GC001443.
22. Gao S., Rudnick R., Xud W., et al. Recycling of deep cratonic lithosphere and generation of intraplatemagmatism in the North China Craton Earth and Pl. Sc. Lett. V. V. 270. 1-2. P. 41-53.
23. Geokem. Geochemistry of igneous rocks.http: www.geokem.com/index.html
24. Green D., Falloon T. Primarymagmasatmid / oceanridges, "hotspots," andotherintraplatesettings: Constraintsonmantlepotentialtemperature GeologicalSocietyofAmerica. SpecialPaper 388. 2005. P. 217-247.
25. Initial Reports of the Deep Sea Drilling Project.deepseadrilling.org> i_reports.htm.
26. Jacob D. Nature and origin of eclogite xenoliths from kimberlites Lithos. 2004. 77. P. 295-316.
27. The Ocean Drilling Program.- http: www / odp.tamu.edu / publications.
28. Sobolev A.V., Hofmann A.W., Sobolev S.V., Nikogosian I.K. An olivine-free mantle source of Hawaiian shield basalts Nature. 2005. V. 434. P. 590-597.

PDF: