V.V. Gordienko  ABOUT VISCOSITY TECTONOSPHERE SUBSTANCES OF CONTINENTS AND OCEANS

English

https://doi.org/10.15407/gpimo2017.01.045

Geology and Mineral Resources of World Ocean 2017, 13 (1): 45-57

V.V. Gordienko 

Institute of Geophysics NAS of Ukraine, Kyiv

ABOUT VISCOSITY TECTONOSPHERE SUBSTANCES OF CONTINENTS AND OCEANS

Purpose. Check correlation parameters for solid and partially molten rocks of the Earth’s tectonosphere. 
Methods. Simulation of the depth distribution of viscosity for regions with the main types of endogenous regimes of continents and oceans. 
Findings. The concept of the viscosity distribution in the tectonosphere of continents and oceans is formulated, which takes into account the real values of the differential stresses and strain rates, the influence of temperature and pressure on this parameter, the appearance of a melt. 
Originality. A scheme is proposed for estimating the viscosity of rocks of the mantle along the velocity section. 
Practical implications. The author believes that the approach developed in this paper and the accumulation of the corresponding material can lead to a significant refinement in the determination of the viscosity of the tectonosphere substance. 
Key words: dynamic viscosity, upper mantle, velocity models. 

References 
1. Gordiyenko V.V. Teplovyye anomalii geosinklinaley. Kiyev: Nauk. dumka. 1975. 142 s. 
2. Gordiyenko V.V. Glubinnyye protsessy v tektonosfere Zemli. Kiyev: IGF NANU. 1998. 85 s. 
3. Gordiyenko V.V. Protsessy v tektonosfere Zemli. (Advektsionno­polimorfnaya gipoteza). Saarbrucken: LAP. 2012. 264 c. 
4. Gordiyenko V.V., Gordiyenko I.V., Zavgorodnyaya O.V. i dr. Ukrainskiy shchit (geofizika, glubinnyye protsessy). Kiyev: Korvín press. 2005. 210 s. 
5. Gordiyenko V.V., Usenko O.V. O geologo­geofizicheskikh kriteriyakh glubin magmaticheskikh ocha­gov v verkhney mantii. Geofiz. zhurnal. 2007. 4. S. 31–38. 
6. Dobretsov N.L. Vvedeniye v global'nuyu petrologiyu. Novosibirsk: Nauka. 1980. 199 s. 
7. Kovalenko V.I., Naumov V.B., Girnis A.V. i dr. Otsenka srednikh soderzhaniy H2O, Cl, F, S v depletirovannoy mantii na osnove sostavov rasplavlennykh vklyucheniy i zakalochnykh ste­kol sredinno­okeanicheskikh khrebtov. Geokhimiya. 2006. 3. S. 243–266. 
8. Persikov E.S. Vyazkost' magmaticheskikh rasplavov. M.: Nauka. 1984. 160 s. 
9. Perchuk L.L. Geotermobarometriya i peremeshcheniye kristallicheskikh porod v kore i verkhney mantii Zemli. Sorosovskiy obrazovatel'nyy zhurnal. 1997. 7. S. 64–72. 
10. Polukhin P.I. Fizicheskiye osnovy plasticheskoy deformatsii. M.: Nauka. 1982. 584 s. 
11. Torkot D., Shubert Dzh. Geodinamika. Geologicheskiye prilozheniya fiziki sploshnykh sred. M.: Mir. 1985. 2. 730 s. 
12. Trubitsin V.P., Rykov V.V., Trubitsin A.P. Konvektsiya i raspredeleniye vyazkosti v mantii. Fizika Zemli. 1997. 3. S. 3–10. 
13. Yukhanyan A.K., Genshaft YU.S. Eksperimental'noye izucheniye plavleniya ksenolitov iz lav Ge­gamskogo nagor'ya v usloviyakh bazal'tovogo sloya zemnoy kory. Izv. AN ArmSSR. 1985. 1. S. 39–44. 
14. Yanovskaya T.B. Osnovy seysmologii. SPb.: VVM. 2006. 288 s. 
15. Ashby M., Verall R. Micromechanisms of flow and fracture and their relevance to the rheology of the upper mantle. Phil. Trans. R. Soc. Lond. 1977. 288A. P. 59–95. 
15. Barnhoorn A., van der Wal W., Drury M. Upper mantle viscosity and lithospheric thickness under Iceland. Journal of Geodynamics. 2011. 52. 3–4, P. 260–270. 
16. Barnhoorn A., van der Wal W., Vermeersen B., Drury M. Lateral, radial and temporal variations in upper mantle viscosity and rheology under Scandinavia. Geochemistry, geophysics, geosystems. 2011. 12. 1. P. 1–19. 
17. Burgmann R., Dresen G. Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy and Field Observations. Annu. Rev. Earth Planet. Sci. 2008. 36. P. 531–567. 
18. Chen S., Hiraga T., Kohlstedt D. Water weakening of clinopyroxene in the dislocation creep regime. Geophys. Res. 2006. 111: B08203. https://doi.org/10.1029/2005JB003885
19. Chen, X., Lin, C., Shi, L. Rheology of the lower crust beneath the northern part of North China: Inferences from lower crustal xenoliths from Hannuoba basalts, Hebei Province, China. Science in China Series D: Earth Sciences. 2007. 50, 8. P. 1128–1141. 
20. Dimanov A, Dresen G. Rheology of synthetic anorthite­diopside aggregates: implications for ductile shear zones. J. Geophys. Res. 2005. 110. B07203. https://doi.org/10.1029/2004JB003431
21. Dimanov A, Wirth R, Dresen G. The effect of melt distribution on the rheology of plagioclase rocks. Tectonophysics. 2000. 328. P. 307–327. 
22. Encyclopedia of Geology. Ed. Selley R., Cocks L., Plimer I. Elsevier Academic Press. I V. 2005. 
23. Freed A, Burgmann R., Calais E. et al. Stress­dependent power­law ow in the upper mantle following the 2002 Denali, Alaska, earthquake. Earth Planet. Sci. Lett. 2006. 252. P.481–489. 
24. Freed A., Burgmann R., Calais E., et al. Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology. J. Geophys. Res. 2006. 111: B08203. URL: https://doi.org/10.1029/2005JB003885
25. Gerya T.V. Introduction to Numerical Geodynamic Modelling. Cambridge University Press. 2010. 345 p. 
26. Gerya T.V., Yuen D.A. Robust Characteristics Method for Modeling Multiphase Visco­Elasto­Plastic Thermo­Mechanical Problems. Physics of the Earth and Planetary Interiors. 2007. 163. P. 83–105. 
27. Gordienko L., Gordienko V. P­wave velocities in the upper mantle beneath oceans. NCGT Newletters. 2016. 3. P. 389–405. 
28. Hack A., Thompson A. Density and Viscosity of Hydrous Magmas and Related Fluids and their Role in Subduction Zone Processes. Journal of Pttrology. 2011. 52. №7&8. P.1333–1362 
29. Hirth G, Kohlstedt D. Rheology of the upper mantle and the mantle wedge: view from the experimentalists. Inside the Subduction Factory, Geophys. Monogr. 138. Washington, DC: Am.Geophys. Soc. 2003. P. 83–105. 
30. Husson D., Edwards P., Johnson S. et al. Crustal structure of the Peru­Chili trench: 80­120S Latitude. The geophysics of Pacific Ocean basin and its margin. 1976. 19. P. 71–85. 
31. Kenner S., Segall P. Lower crustal structure in northern California: implications from strain­rate variations following the 1906 San Francisco earthquake. J. Geophys. Res. 2003. 108. P. 2011–2023. 
32. Levin V., Kim W., Menke W. Seismic velosities in shallow crust of western New England and northern New York. Вull. Seis. Soc. Of Am. 1996. 85, 1. P. 207–219.
33. Parsons T. The Basin and Range Province In Continental Rifts: Evolution, Structure and Tectonics. Olsen, K., ed., Amsterdam, Elsevier. 1995. P. 277–324.
34. Peltonen P., Kinnunen K., Huhma H. Petrology of two diamondiferous eclogite xenoliths from the Laqhtojoki kimberlite pipe, eastern Finland. Lithos. 2002. 63. №3­4. P. 151­164.
35. Sacek V., Ussami N. Upper mantle viscosity and dynamic subsidence of curved continental margins. Nature Communications. 2013. № 4. Article number: 2036.
36. Schmeling H. Partial melting and melt segregation in a convecting mantle. in: Physics and Chemistry of Partially Molten Rocks. Kluwer Academic Publisher. Dordrecht, 2000, P. 1–25.
37. Scoppola B., Boccaletti D., Bevis M. et al. The Westward Drift of the Lithosphere: A rotational drag. Geological Society of America Bulletin. January/February. 2006. P. 199–209.
38. Sobolev, S., Zeyen, H., Stoll, G. et al. Upper mantle temperatures from teleseismic tomography of French Massif Central. Earth Planet. Sci. Lett. 1996. № 139. P. 147–163.
39. Syono Y., Manghnani M. Rheological Structure of a Subduction Zone: Application of High P­T Viscous and Anelastic Properties of Mantle Rocks. Tokyo. TERRAPUB. 1992. DOI: 10.1029/ GM067p 0263.
40. Tackley P., Ammann M., Brodholt J. et al. Mantle Dynamics in Super­Earths: Post­Perovskite Rheology and Self­Regulation of Viscosity. EGU General Assembly 2012 Geophysical Research. Abstracts. 14. EGU2012­6579. 2012.
41. Twiss R. Theory and applicability, of a recrystallized grain size paleopiezometer. Pure Appl. Geophys. 1977. 115. P. 227–244.
42. Van der Wal D., Chopra P., Drury M. et al. Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophys. Res. Lett. 1993. 20. P. 1479–1482.
43. Wang K. Elastic and viscoelastic models of crustal deformation in subduction earthquake cycles. The Seismogenic Zone of Subduction Thrust Faults. NewYork: Columbia Univ. Press. 2007. P. 540–575.
44. Watson S., McKenze D. Melt Generation by Plumes: A Study of Havaiian Volcanism. Journal of Pttrology. 1990. 32. №3. P. 501–537.