Zezekalo I.H. ANALYTICAL REVIEW OF TECHNOLOGIES OF THE INDUSTRIAL DEVELOPMENT OF AQUATIC METHANOHYDRATES

https://doi.org/10.15407/gpimo2022.02.003

I.H. Zezekalo, Dr. Sci. (Technology Sci.), Prof.
National University «Poltava Polytechnic named after Yury Kondratyuk»
24 Pershotravnevy prospect, Poltava, 36011, Ukraine
e-mail: 2012.nadra@gmail.com ORCID 0000-0002-9962-6905
V.P. Kobolev, Corresponding Member NAS of Ukraine, Dr. Sci. (Geol.), Prof.
Institute of Geophysics named after S.I. Subbotin NAS of Ukraine
32 Palladin Ave, Kyiv, 03142, Ukraine
e-mail: kobol@igph.kiev.ua ORCID 0000-0001-5625-5473
O.Yu. Lukin, Academician NAS of Ukraine, Dr. Sci. (Geol. & Mineral.), Prof.
National University «Poltava Polytechnic named after Yury Kondratyuk»
24 Pershotravnevy prospect, Poltava, 36011, Ukraine
e-mail: lukin@nas.gov.ua ORCID 0000-0003-4844-1617
A.M. Safronov, graduate student
Institute of Geophysics named after S.I. Subbotin NAS of Ukraine
32 Palladin Ave, Kyiv, 03142, Ukraine
e-mail: sseveneleven561@gmail.com ORCID 0000-0001-7242-2534

ANALYTICAL REVIEW OF TECHNOLOGIES OF THE INDUSTRIAL DEVELOPMENT OF AQUATIC METHANOHYDRATES

Methane hydrates are one of the most powerful reserves of unconventional sources of hydrocarbons. This is clearly evidenced by the forecast estimates of world volumes of methane in the form of gas hydrates, which many times exceed the total resources of traditional natural gas. In the foreseeable future, natural methane hydrates should significantly increase the current energy balance of natural hydrocarbon fuel resources.

Progress in their study can be ensured by the dialectical unity of theoretical and experimental research, focused mainly on thermodynamics, kinetics and their physical properties, as well as on the development and testing of technologies for methane production from gas hydrate deposits. Existing methods of developing gas hydrates involve their preliminary dissociation into gas and water. At the same time, the deposit depressurization method is considered the most promising. However, there is still no commercially attractive technology for the development of gas hydrates.

The article presents an overview of gas hydrate research in the world, provides an analysis of prospective methods of their development, summarizes the advantages and disadvantages of current research and industrial attempts to extract methane from aqua deposits of gas hydrates, and evaluates the prospects of various technologies.

Currently known examples of research and industrial development of gas hydrate deposits have demonstrated a number of problems. However, encouraging results were obtained. The analysis of processes in the oil and gas production industry shows that profitable industrial production of natural gas from gas hydrate deposits will be possible after an effective breakthrough technology appears on the market.

Key words: natural gas hydrates, marine methane hydrates, technologies for methane production, method of depressurization.

References

  1. Anfilatova E.A. Analiticheskij obzor sovremennyh zarubezhnyh dannyh po probleme rasprostraneniya gazogidratov v akvatoriyah mira. Neftegazovaya geologiya. Teoriya i praktika. 2008(3). URL: http://www.ngtp.ru/9/44_2008.pdf.
  2. Basniev K.S., Suhonosenko A.A. Perspektivy osvoeniya resursov gazogidratnyh mestorozhdenij. Gazovaya promyshlennost'. 2010. № 1. S. 22—23.
  3. Byakov YU.A., Kruglyakova R.P. Gazogidraty osadochnoj tolshchi CHernogo morya — uglevodorodnoe syr'e budushchego. Razvedka i ohrana nedr. 2001. № 8. S. 14—19. https://doi.org/10.3362/0262-8104.2001.019
  4. Vasilev A., Dimitrov L. Ocenka prostranstvennogo raspredeleniya i zapasov gazogidratov v CHernom more. Geologiya i geofizika. 2002. 43, № 7. S. 672—684.
  5. Dmitrievskij A.N., Valyaev B.M. Rasprostranenie i resursy metana gazovyh gidratov. Nauka i tekhnika v gazovoj promyshlennosti. 2004. № 1—2. S. 5—13.
  6. Duchkov A.D. Gazogidraty metana v osadkah ozera Bajkal. Rossijskij himicheskij zhurnal. 2003. XLVII, № 3. S. 91—100.
  7. Efremova A.G., ZHizhchenko B.P. Obnaruzhenie kristall-gidratov gazov v osadkah sovremennyh akvatorij. DAN SSSR. 1974. 214. № 5. S. 1179—1181.
  8. Klerks YA., Mark De Batist, Granin N., Zemskaya T., Hlystov O. Gazogidraty presnovodnogo «Okeana». Geologiya ozera Bajkal. 2007. S. 82—91.
  9. Kobolev V.P., Verpahovskaya A.O. Skopleniya gazovyh gidratov v paleodel'te Dnepra kak ob"ekt sejsmicheskih issledovanij na sklone severo-zapadnogo shel'fa CHernogo morya. Geologiya i poleznye iskopaemye Mirovogo okeana, 2014. № 1. S. 81—93.
  10. Konyuhov A.I., Ivanov M.K., Kul'nickij L.M. O gryazevyh vulkanah i gazovyh gidratah v glubokovodnyh rajonah CHernogo morya. Litologiya i poleznye iskopaemye. 1990. № 3. S. 12—23.
  11. Korsakov O.D., Stupak S.N., Byakov YU.A. CHernomorskie gazogidraty — netradicionnyj vid uglevodorodnogo syr'ya. Geol. zhurnal. 1991. № 5. S. 67—75.
  12. Kruglyakova R.P., Kruglyakova M.V., SHevcova N.T. Geologo-geohimicheskaya harakteristika estestvennyh proyavlenij uglevodorodov v CHernom more. Geologiya i poleznye iskopaemye Mirovogo okeana. 2009. № 1. S. 37—51.
  13. Kuznecov F.A., Istomin V.A., Rodionova T.V. Gazovye gidraty: istoricheskij ekskurs, sovremennoe sostoyanie, perspektivy issledovanij. Ros. him. zhurnal. 2003. XLVII, № 3. S. 5—18.
  14. Kuz'min M.I., Kalmychkov G.V., Duchkov A.D. i dr. Gidraty metana v osadkah ozera Bajkal. Geologiya rudnyh mestorozhdenij. 2000. 42, № 1, S. 25—37.
  15. Lukin A.E., Kobolev V.P., Prigarina T.M. Uglevodorodnyj gazovyj potencial Ukrainy i puti ego osvoeniya. Neft' i gaz Ukrainy. 2018. № 7 (38). S. 35—58.
  16. Lukіn O.YU. Gazovі resursy Ukrainy: suchasnyj stan і perspektyvy. Vіsn. NAN Ukrainy. 2011. № 5. S. 40—48.
  17. Mastepanov A.M. Gazogidraty: put' dlinoyu v 250 let (ot laboratornyh issledovanij do mesta v mirovom energeticheskom balanse). Moskva: Energiya, 2014. 272 s.
  18. Matveeva T.V., Solov'ev V.A. Geologicheskij kontrol' skoplenij gazovyh gidratov na hrebte Blejk-Auter, Severnaya Atlantika. Geologiya i geofizika. 2004. 43, № 7. S. 662—671.
  19. SHnyukov E.F. Gazogidraty metana v CHernom more. Geologiya i poleznye iskopaemye Mirovogo okeana. 2005. № 2. S. 41—52.
  20. SHnyukov E.F., Kobolev V.P. Geologo-geofizicheskie issledovaniya v 615-m rejse NIS «Professor Vodyanickij» v CHernom more. Geofiz. zhurnal. 2004. 26. № 6. S. 185—189.
  21. SHnyukov E.F., Kobolev V.P., Goshovskij S.V. Dorozhnaya karta osvoeniya chernomorskih gazogidratov metana v Ukraine. Geologiya i poleznye iskopaemye Mirovogo okeana. 2018. № 3. S. 5—21. https://doi.org/10.15407/gpimo2018.03.005
  22. SHCHebetov A. Mestorozhdeniya gazogidratov: resursy i vozmozhnye metody razrabotki. Tekhnologii TEK. 2006. S. 12—16.
  23. About the start of the 2nd methane hydrate marine production test (field work). JOGMEC (2017). URL: http://www.jogmec.go.jp/news/release/news_10_000243.html
  24. Baba K., Yamada Y. BSRs and associated reflections as an indicator of gas hydrate and free gas accumulation: an example of accretionary prism and forearc basin system along the Nankai Trough, off central Japan. Resour. Geol. 2004. 54. P. 11—24. https://doi.org/10.1111/j.1751-3928.2004.tb00183.x
  25. Bohrman G., Schenck S. Marin gas hydrates of the Black Sea (MARGASCH). RV Meteor Cruise M52/1. Geomar Rep, Kiel. 2002.
  26. Brooks J.M., Bernard B., Summer N.S. Gas Hydrates in Seabed Sediments Offshore Trinidad/Barbados. In Proceedings of AAPG Annual Meeting, Dallas, TX, USA, 18—21 April 2004. https://doi.org/10.3997/2214-4609-pdb.259.P10
  27. Chaturvedi E., Patidar K., Srungavarapu M., Laik S., Mandal A. Thermodynamics and kinetics of methane hydrate formation and dissociation in presence of calcium carbonate. Advanced Powder Technology. 2018. № 29. P. 1025—1034. https://doi.org/10.1016/j.apt.2018.01.021
  28. Chen B., Yang M., Sun H., Wang P. & Wang D. Visualization study on the promotion of natural gas hydrate production by water flow erosion. Fuel. 2019. 235. P. 63—71. https://doi.org/10.1016/j.fuel.2018.07.072
  29. Chen X. & Espinoza D. N. Surface area controls gas hydrate dissociation kinetics in porous media. Fuel. 2018. 234. P. 358—363. https://doi.org/10.1016/j.fuel.2018.07.030
  30. Choudhary N., Chakrabarty S., Roy S. & Kumar R. A comparison of different water models for melting point calculation of methane hydrate using molecular dynamics simulations. Chemical Physics. 2019. 516. P. 6—14. https://doi.org/10.1016/j.chemphys.2018.08.036
  31. Collett T.S. Energy resource of natural gas Hydrates. Bull. AAPG. 2002. 86, 11. P. 1971—1992. https://doi.org/10.1306/61EEDDD2-173E-11D7-8645000102C1865D
  32. Collett T.S. International Team Completes Gas Hydrate Expedition in the Offshore of India; URL: www.usge.gov/newsroom (accessed on 29 August 2007).
  33. Collett T.S. Natural Gas Hydrate as a Potential Energy Resource. In Natural Gas Hydrate in Oceanic and Permafrost Environments, Coastal Systems and Continental Margins; Max, M.D., Ed.; Kluwer: Dordrecht, The Netherlands, 2003. P. 123—136. https://doi.org/10.1007/978-94-011-4387-5_10
  34. Collett T.S. Natural Gas Hydrates of the Prudhoe Bay and Kuparuk River Area, North Slope, Alaska. AAPG Bullutin. 1993. 77. P. 793—812. https://doi.org/10.1306/BDFF8D62-1718-11D7-8645000102C1865D
  35. Dallimore S.R., Uchida, T., Collett, T.S. Summary. In Scientific Results from JAPEX/JNOC/GSC Mallik 2L—38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada; Dallimore, S.R., Uchida, T., Collett, T.S., Eds.; GSC: Ottawa, Canada, 1999. P. 1—10. https://doi.org/10.4095/210723
  36. Dawe R.A., Thomas S.A. Large Potential Methane Source - Natural Gas Hydrates. Energy Sources, 2007, A 29. Р. 217—229. https://doi.org/10.1080/009083190948676
  37. Dillon W.P., Max M.D. Oceanic Gas Hydrate. In Natural Gas Hydrate in Oceanic and Permafrost Environments, Coastal Systems and Continental Margins; Max, M.D., Ed.; Kluwer: Dordrecht, the Netherlands, 2003. P. 61—76. https://doi.org/10.1007/978-94-011-4387-5_6
  38. Dillon W.P., Nealon J.W., Taylor M.H., Lee M.W., Drury R.M., Anton C.H. Seafloor collapse and methane venting associated with gas hydrate on the Blake Ridge — causes and implications to seafloor stability and methane release, in: C.K. Paull, W.P. Dillon (Eds.), Natural Gas Hydrates: Occurrence, Distribution, and Detection, American Geophysical Union, Washington, DC, 2001. P. 211—233. https://doi.org/10.1029/GM124p0211
  39. Feng, J.C., Wang, Y. & Li, X.S. (2017). Entropy generation analysis of hydrate dissociation by depressurization with horizontal well in different scales of hydrate reservoirs. Energy, 125, p. 62—71. https://doi.org/10.1016/j.energy.2017.02.104
  40. Foucher J.P., NouzJ H., Henry P. Observation and tentative interpretation of a double BSR on the Nankai slope. Mar. Geol. 2002. 187. Р. 161—175. https://doi.org/10.1016/S0025-3227(02)00264-5
  41. Gas Produced from Methane Mydrate (Provisional). (2013). Japan Oil, Gas and Metals National Corporation (GOGMEC). URL: http://www.jogmec.go.jp/english/news/release/news_01_000006
  42. Holbrook W.S. Seismic studies of the Blake Ridge: implications for hydrate distribution, methane expulsion and free gas dynamics. In: Paull, C.K., Dillon, W.P. (Eds.), Natural Gas Hydrates: Occurrence, Distribution and Detection. Geophysical Monographs. American Geophysical Union. 2001. Р. 235—256. https://doi.org/10.1029/GM124p0235
  43. Hyndman R.D., Foucher J.P., Yamano M., Fisher A., and Scientific Team of Ocean Drilling Program Leg 131, Deep sea bottom simulating reflectors: Calibration of the base of the hydrate stability field as used for heat flow estimates. Earth and Planetary Science Letters. 1992. 109. P. 289—301. https://doi.org/10.1016/0012-821X(92)90093-B
  44. Ion, G., Lericolais, G., NouzJ, H., Panin, N., Ion, E., 2002. Seismoacoustic evidence of gases in sedimentary edifices of the paleo-Danube realm. CIESM Workshop Series. 17. P. 91—95.
  45. Ivanov M.K., Limonov A.F., van Weering Tj.C.E. Comparative characteristics of the Black Sea and Mediterranean Ridge mud volcanism. Marin Geology. 1997. 132. P. 253—271. https://doi.org/10.1016/0025-3227(96)00165-X
  46. Jarrar Z.A., Alshibli K.A., Al-Raoush R.I. & Jung J. Gas Driven Fracture During Gas Production Using 3D Synchrotron Computed Tomography. Energy Geotechnics. 2018. P. 344—351. https://doi.org/10.1007/978-3-319-99670-7_43
  47. Johnson, A. H. (2013). Unconventional Energy Resources: 2013 Review. Natural Resources Research, 23 (1), p. 19—98. https://doi.org/10.1007/s11053-013-9224-6
  48. Kruglyakova R.P., Byakov Y.A., Kruglyakova M.V., Chalenko L.A. and Shevtsova N.T. Natural oil and gas seeps on the Black Sea floor. Geo-Marine Letters, International Journal of Marine Geology. Springer-Verlag, 2004. https://doi.org/10.1007/s00367-004-0171-4
  49. Li G., Li X.-S., Lv Q.-N. & Zhang Y. Permeability measurements of quartz sands with methane hydrate. Chemical Engineering Science. № 193. 2019. P. 1—5. https://doi.org/10.1016/j.ces.2018.08.055
  50. Li G., Moridis G.J., Zhang K., Li X.-S. Evaluation of gas production potential from marine gas hydrate deposits in Shenhu Area of South China Sea. Energy Fuels. № 24. 2010. P. 6018—6033. https://doi.org/10.1021/ef100930m
  51. Lu, S.M. A global survey of gas hydrate development and reserves: Specifically in the marine field. Renew. Sustain. Energy Rev. 41. 2015. P. 884—900. https://doi.org/10.1016/j.rser.2014.08.063
  52. Ludman T., Wang H.K., Konerding P. et al., 2004. Heat flow and quantity of methane deduced from a gas field in the vicinity of the Dnieper Canyon, north-western Black Sea. Geo-Mar. Lett. 24. P. 182—193. https://doi.org/10.1007/s00367-004-0169-y
  53. Majorowicz J.A., Osadetz K.G. Gas hydrate distribution and volume in Canada. Amer. Assoc. Petrol. Geol. Bull. 2001. 85. P. 1211—1230. https://doi.org/10.1306/8626CA9B-173B-11D7-8645000102C1865D
  54. Makogon Y.F. (2010) Natural gas hydrates e a promising source of energy. J. Nat. Gas Sci. Eng. 2. P. 49—59. https://doi.org/10.1016/j.jngse.2009.12.004
  55. Matsumoto, R., Masuda, M., Foucher, J., Tokuyama, H., Ashi, J., Tomaru, H. Double BSR in the eastern Nankai Trough: fact or artifact. AGU 2000 Western Pacific Geophys. Meeting. 2000. URL: http://www.agu.org/meetings/waiswp00.html.
  56. Matsuzawa M., Umezu S., Yamamoto K. Evaluation of Experimental Program 2004: Natural Hydrate Exploration Campaign in the Nankai-Trough Offshore Japan. In Proceedings of IADC/SPE Drilling Conference, Miami, FL, USA, 21—23 February 2006; IADC/SPE 98960. https://doi.org/10.2118/98960
  57. Merey S. Evaluation of drilling parameters in gas hydrate exploration wells. Journal of Petroleum Science and Engineering. № 172, 2019. P. 855—877. https://doi.org/10.1016/j.petrol.2018.08.079
  58. Mienert J., Vanneste M., Bhnz S., Andreassen K., Haflidasson H., Sejrup H.P. Ocean warming and gas hydrate stability on the mid5Norwegian margin at the Storegga Slide. Mar. Pet. Geol. 2005. 22. Р. 233—244. https://doi.org/10.1016/B978-0-08-044694-3.50024-X
  59. Moridis G.J., Collett T.S., Boswell R., Kurihara M., Reagan M.T., Koh C., Sloan E.D. Towards Production from Gas Hydrates: Current Status, Assessment of Resources, and Model5Based Evaluation of Technology and Potential. In Proceedings of the Unconventional Reservoirs Conference, Keystone, CO, USA, 10—12 February 2008; SPE 114163. https://doi.org/10.2118/114163-MS
  60. Nischal T.S., Kumar A. Natural Gas Scenario in India5The Recent Upswings, Concerns, and the way Forward. In: Proceedings of the SPE APOGCE, Perth, Australia, 20—22 October 2008 SPE 115700. https://doi.org/10.2118/115700-MS
  61. Paull CK, Matsumoto R, Wallace PJ and the ODP Leg 164A Shipboard Scientific Party. Initial Reports of the Ocean Drilling Program Leg 164A. College Station, Texas, Ocean Drilling Program. 1996.
  62. Pellenbarg R.E., Max M.D. Introduction, physical properties, and natural occurrences of hydrate, in: M.D. Max (Ed.), Natural Gas Hydrate in Oceanic and Permafrost Environments, Kluwer Academic, Dordrecht, 2000. P. 1—8. https://doi.org/10.1007/978-94-011-4387-5_1
  63. Popescu I., De Batist M., Lericolais G. at al. Multiple bottom5simulating reflections in the Black Sea: Potential proxies of past climate conditions. Marine Geology. 2006. 227. P. 163—176. https://doi.org/10.1016/j.margeo.2005.12.006
  64. Ruan X., Song Y. Numerical simulation of methane production from hydrates induced by different depressurizing approaches. Energies. 2012. № 5. P. 438—458. https://doi.org/10.3390/en5020438
  65. Smith S.L., Judge A.S. Estimates of Methane Hydrate Volumes in the Beaufort-Mackenzie Region, Northwest Territories. In Current Research; GSC: Ottawa, Canada, 1995. P. 81—88. https://doi.org/10.4095/202800
  66. Song, Yongchen, Chuanxiao, Cheng, Jiafei, Zhao, Zihao Zhu, Weiguo Liu, Mingjun Yang, & Kaihua Xue. (2015). Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods. Applied Energy. 145. P. 265—277. https://doi.org/10.1016/j.apenergy.2015.02.040
  67. Suess E., Torres M.E., Bohrmann G., Collier R.W., Rickert D., Goldfinger C., Linke P. Seafloor methane hydrates at Hydrate Ridge, Cascadia Margin, in: C.K. Paull, W.P. Dillon (Eds.), Natural Gas Hydrates: Occurrence, Distribution and Detection, American Geophysical Union, Washington, DC, 2001. P. 87—89. https://doi.org/10.1029/GM124p0087
  68. Sun, X., Luo, T., Wang, L., Wang, H., Song, Yongchen & Li, Yanghui. (2019). Numerical simulation of gas recovery from a low5permeability hydrate reservoir by depressurization. Applied Energy, 250. P. 7—18. https://doi.org/10.1016/j.apenergy.2019.05.035
  69. Wu N., Yang S., Zhang H., Liang J., Wang H., Lu J. Gas Hydrate System of Shenhu Area, Northern South China Sea: Wireline Logging. Geochemical Results and Preliminary Resources Estimates. In: Proceedings of the Offshore Technology Conference, Houston, TX, USA, 3—6 May 2010. OTC 20485. https://doi.org/10.4043/20485-MS
  70. Yang J., Zeng F., Cheng H., Gao J. Hydraulic lifting mining method for gas hydrate exploitation in the South China Sea. Henan Sci. 33. 2015. P. 785—790.
  71. Yin Z., Chong Z.R., Tan H.K., Linga P. Review of gas hydrate dissociation kinetic models for energy recovery. Journal of natural Science and Engineering. № 35, 2016. P. 1362—1387. https://doi.org/10.1016/j.jngse.2016.04.050
  72. Yin Z., Khurana M., Tan H.K. & Linga P. Review of gas hydrate growth kinetic models. Chemical Engineering Journal, 2018. 342. P. 9—29. https://doi.org/10.1016/j.cej.2018.01.120
  73. Zhao, Jiafei, Zihao Zhu, Yongchen Song, Weiguo Liu, Yi Zhang & Dayong Wang. (2015). Analyzing the process of gas production for natural gas hydrate using depressurization. Applied Energy. 142. P. 125—134. https://doi.org/10.1016/j.apenergy.2014.12.071
  74. Zhongfu Tan, Ge Pan, Pingkuo Liu. Focus on the Development of Natural Gas Hydrate in China. Sustainability. 2016. 520, 8. https://doi.org/10.3390/su8060520.

PDF

English