https://doi.org/10.15407/gpimo2021.03.022
V.P. Kobolev, NAS Corresponding Member, Dr. Sci. (Geol. & Mineral.), Prof., Chief Researcher
E-mail: kobol@igph.kiev.ua
ORCID 0000-0001-5625-5473
S.F. Mikhailyuk, Research Scientist
Е-mail: slawa52@ukr.net
ORCID 0000-0001-9534-6183
A.M. Safronov, graduate student
Е-mail: sseveneleven561@gmail.com
ORCID 0000-0001-7242-2534
IGP by S.I. Subbotin of the NАS of Ukraine
03142, Kyiv, 32 Palladin Ave.
EXPERIMENTAL LABORATORY COMPLEX FOR STUDYING THE PHYSICAL PROPERTIES OF ARTIFICIALLY FORMED GAS-HYDRATE-CONTAINING SEDIMENTS
Physical properties of gas hydrate-containing sediments (HCS) are extremely important information for the development of methods for their search and exploration. The presence of gas hydrates in marine bottom sediments significantly changes their physical properties, so they can be detected by marine remote geophysical observations. The physical properties of HCS are very important for detecting the presence of these compounds, estimating the amount of captured gas hydrates by sediments, as well as developing methods for using this resource. Currently, the study of physical properties concerned mainly artificial gas hydrates in the process of formation and decomposition under various thermodynamic conditions in their pure form. Therefore, very little is known about the physical properties of HCS, which makes their detection by remote geophysical surveys too difficult.
Development and creation of experimental laboratory modular complex for formation of artificial methane gas hydrates in various lithological-granulometric matrices (sandstones, argillites, siltstones, etc.) and measurement of their physical properties in thermodynamic conditions of bottom sediments of the Black Sea, will increase efficiency technology of methane hydrate deposits development. Under experimental conditions, along with the thermal conductivity and velocities of longitudinal and transverse waves of artificial HCS, the parameters of elastic deformation, strength, and decay characteristics will be measured, which will allow performing theoretical analysis to build models based on different hypotheses of their genesis.
At the S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine created a model of the installation for the formation and study of the physical properties of HCS. The development is based on the modern technological level of research in the field of thermobaric petro- physical experimental modeling of geological environments, as well as on the use of modern software and hardware laboratory research to obtain physical properties of bottom sediments of various lithological and particle size distribution.
Keywords: gas hydrates, marine sediments, methane, modeling, physical properties.
References
1. Ginsburg G.D., Solov'ev V.A. Submarinnye gazovye gidraty. SPb.: VNIIOkeangeologiya, 1994, 192 s.
2. Duchkov A.D., Istomin V.E., Sokolova L.S. Geotermicheskij metod obnaruzheniya gazovyh gidratov v donnyh osadkah akvatorij. Geologiya i geofizika, 2012. 53, №7. S. 922—931. https://doi.org/10.1016/j.rgg.2012.05.009
3. Korchin V.A., Burtnyj P.A., Kobolev V.P. Petrofizicheskoe glubinnoe modelirovanie Ukrainskogo shchita. Kiev: Nauk. dumka, 2013. 312 s.
4. Kuznecov F.A., Istomin V.A., Rodionova T.V. Gazovye gidraty: istoricheskij ekskurs, sovremennoe sostoyanie, perspektivy issledovanij. Rossijskij himicheskij zhurnal. 2003. 47, № 3. S. 3—18.
5. Makogon YU.F. Prirodnye gazogidraty: otkrytie i perspektivy. Gazovaya promyshlennost'. 2001. № 5. S. 10—16.
6. SHnyukov E.F., Kobolev V.P., Goshovskij S.V. Dorozhnaya karta osvoeniya CHernomorskih gazogidratov metana v Ukraine. Geol. i polezn. iskop. Mirovogo okeana. 2018. № 3. S. 5—21. https://doi.org/10.15407/gpimo2018.03.005
7. Berge L.I., Jacobsen K.A., Solstad A. Measured acoustic wave velocities of R11 (CCl3F) hydrate samples with and without sand as a function of hydrate concentration. J. Geophys. Res. 1999. № 104. 15. P. 415—424. https://doi.org/10.1029/1999JB900098.
8. Blackwell J.H. A transient-flow method for determination of thermal constants of insulating materials in bulk. J. app. Phys. 1954. 25(2). P. 137—144. https://doi.org/10.1063/1.1721592
9. Du Frane W.L., Stern L.A., Weitemeyer K.A., Constable S., Pinkston J.C., Roberts J.J. Electrical properties of polycrystalline methane hydrate. Geophys. Res. Lett. 2011. № 38. L09313. https://doi.org/10.1029/2011GL047243
10. Dvorkin J., Prasad M., Sakai A., Lavoie D. Elasticity of marine sediments: Rock physics modeling. Geophys. Res. Lett. 1999. № 26. pp. 1781—1784. https://doi.org/10.1029/1999GL900332,
11. Guerin G., Goldberg D. Sonic waveform attenuation in gas hydrate-bearing sediments from the Mallik 2L—38 research well, Mackenzie Delta, Canada. J. Geophys. Res. 2002. 107 (B5). P. 17781—17795. https://doi.org/10.1029/2001JB000556
12. Hammerschmidt U. Simultaneous Measurement of Thermal Conductivity, Thermal Diffusivity, and Volumetric Specific Heat. Thermal Conductivity. 2005. 27. P. 313—327. https://doi.org/10.1007/s10765-006-0061-2
13. Hardage B.A., Sava D., Backus M.M., Remington R., Graves R., Graebner R., Roberts H.H. Evaluation of deepwater gas hydrate systems. Leading Edge. 2006. 25. P. 572—576. https://doi.org/10.1190/1.2202661.
14. Helgerud M.B., Dvorkin J., Nur A., Sakai A., Collett T. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophys. Res. Lett. 1999. 26. P. 2021—2024. https://doi.org/10.1029/1999GL900421.
15. Holbrook W.S., Hoskins H., Wood W.T., Stephen R.A., Lizarralde D. Methane hydrate and free gas on the Blake Ridge from Vertical Seismic Profiling. Science. 1996. 273. P. 1840—1843. https://doi.org/10.1126/science.273.5283.1840
16. Kittel C., Kroemer H. Thermal Physics. W.H. Freeman& Co., New York. 1980. 473 p.
17. Tinivella U., Carcione J.M. Estimation of gas-hydrate concentration and free-gas saturation from log and seismic data. Lead. Edge. 2001. № 20 (2). P. 200—203. https://doi.org/10.1190/1.1438914
18. Waite W.F., Gilbert L.Y., Winters W.J., Mason D.H. Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data. Review of Scientific Instruments. 2006. 77, 044904. https://doi.org/10.1063/1.2194481
19. Zillmer M. A method for determining gashydrate and freegas saturation of porous media from seismic measurements. Geophysics. 2006. № 71. N21—N32. https://doi.org/10.1190/1.2192910