Gordienko V.V. VELOCITY MODEL OF THE UPPER MANTLE OF THE FLANKING PLATEAUS OF MID-OCEANIC RIDGES

https://doi.org/10.15407/gpimo2020.04.019

V.V. Gordienko, Dr. Sci. (Geol.& Mineral.), Professor, Head of Department

S.I. Subbotin Institute of Geophysics of NAS of Ukraine

32, Palladin ave., Kyiv, Ukraine, 03142

E-mail: gordienkovadim39@gmail.com

ORCID 0000-0002-5619-0486 Scopus authorId=7102473958

L.Ya. Gordienko, Research Scientist

S.I. Subbotin Institute of Geophysics of NAS of Ukraine

32, Palladin ave., Kyiv, Ukraine, 03142

VELOCITY MODEL OF THE UPPER MANTLE OF THE FLANKING PLATEAUS OF MID-OCEANIC RIDGES

A new element is included in the study of velocity sections of the upper mantle of regions of continents, oceans, and transition zones with different endogenous regimes (according to the advection-polymorphic hypothesis — APH). This is the flanking plateaus (FP) of the mid-ocean ridges (MOR). It is assumed that these regions underwent the process of oceanization in the Mesozoic along with other parts of the oceans. In the Neogene MORs were formed. Significant parts of the basins were engulfed in modern activation, including magmatism. Between these parts of the oceans, relatively narrow strips (200—300 km wide) have survived, which some authors refer to as flanking plateaus. They are located at the edges of the MOR. FP did not experience young activization. This is indicated by the features of the bottom topography, magnetic, gravitational and thermal fields, and a velocity section of the upper horizons of the mantle.

An element of checking the nature of the FP can be the construction of a velocity section of the mantle beneath these regions. According to the APH, it should differ from the neighboring ones by the increased velocity of seismic waves in the upper about 200 km. The experimental data for such work turned out to be extremely small. It was possible to build only one travel-time, using data on the southern part of the Atlantic Ocean. Insignificant information was also attracted on the southern part of the East Pacific Rise and the Mid-Indian Ridge. The travel-time corresponds to the velocity section, which completely coincides with the forecast. The latter was calculated according to the heat and mass transfer scheme in the APH version and the thermal model of the mantle.

The velocity section of the FP mantle does not contain indications of a partial melting layer. Consequently, there should be no manifestations of young magmatism in FP. Verification showed that in most of the studied fragments of MOR this is true.

Keywords: midocean ridges, flanking plateaus, velocity sections of the upper mantle.

 

References

1. Blyuman B.A. Vyvetrivanie bazal'tov i nesoglasiya v kore okeanov: vozmozhnye geodinamicheskie sledstviya. Regional'naya geologiya i metallogeniya. 2008. 35. S. 72—86.

2. Gordienko V.V. Teplovye processy, geodinamika, mestorozhdeniya. 2017. 284 s. URL: https://docs.wixstatic.com/ugd/6d9890_472adba2848246a9bfd80910e6848299.p...

3. Gordienko V.V. Glubina krovli perekhodnoj zony mezhdu verhnej i nizhnej mantiej Zemli. Dopovіdі NAN Ukraїni. 2018. № 4. S. 60—65.

4. Gordienko V.V. Zemnaya kora okeanov i polosovye anomalii magnitnogo polya. Geol. i polezn. iskop. Mirovogo okeana. 2019. № 4. S. 3—35. https://doi.org/10.15407/gpimo2019.04.003

5. Gordienko V.V., Gordienko L.YA. Skorostnaya model' verhnej mantii pod ostrovnymi dugami i beregovymi hrebtami Tihogo okeana. Geol. i polezn. iskop. Mirovogo okeana. 2015. № 3. S. 69—81.

6. Gordienko V.V., Gordienko L.YA. Skorostnye razrezy verhnej mantii okeanicheskih kotlovin i glubokovodnyh zhelobov. Dopovіdі NAN Ukraїni. 2016. № 4. S. 62—68.

7. Kashincev G.L. Geodinamika i magmatizm nachal'nyh etapov obrazovaniya Atlantiki. Geotektonika. 2001. № 2. S. 64—77.

8. Kennet Dzh. Morskaya geologiya. T. 1. Moskva: Mir, 1987. 397 s.

9. Lomtev V.L. Abissal'nye holmy SZ plity Pacifiki: osobennosti stroeniya i otnositel'nyj vozrast. Geol. i polezn. iskop. Mirovogo okeana. 2016. № 2. S. 57—75. https://doi.org/10.15407/gpimo2016.02.057

10. Nizkous I.V., Kissling E., Sanina I.A,, Gontovaya L.I. Skorostnye svojstva litosfery perekhodnoj zony okean-kontinent v rajone Kamchatki po dannym sejsmicheskoj tomografii. Fizika Zemli. 2006. № 4. S. 18—29.

11. Pavlenkova N.I., Pogrebickij YU.E., Romanyuk T.V. Sejsmo-plotnostnaya model' kory i verhnej mantii YUzhnoj Atlantiki po Angolo-Brazil'skomu geotraversu. Fizika Zemli. 1993. № 10. S. 27—38.

12. Pogrebickij YU.E., Goryachev YU.V., Osipov V.A., Truhalev A.I. Stroenie okeanicheskoj litosfery po rezul'tatam issledovanij na Angolo-Brazil'skom geotraverze. Sovetskaya geologiya. 1990. № 12. S. 8—22.

13. Pogrebickij YU.E., Truhalev A.P. Problema formirovaniya Sredinno-Atlanticheskogo hrebta v svyazi s sostavom i vozrastom porod ego metamorficheskogo kompleksa. Spornye aspekty tektoniki plit i vozmozhnye al'ternativy. Moskva: OIFZ RAN, 2002. S. 189—203.

14. Podgornyh L.V., Hutorskoj M.D. Geotermicheskaya asimmetriya sredinno-okeanicheskih hrebtov. Teplovoe pole Zemli i metody ego izucheniya. MGGRU, 2000. S. 164—172.

15. Popova A.K. Teplovoj potok na akvatoriyah. Sravnitel'naya tektonika kontinentov i okeanov. Mossow: Interdepartmental Geophysical Committee, 1987. P. 34—42.

16. Pushcharovskij YU.M. Osnovnye cherty tektoniki YUzhnoj Atlantiki. Moskva: GEOS, 2002. 80 c.

17. SHulyatin O.G., Andreev A.I., Belyackij B.V., Truhalev A.I. Vozrast i etapnost' formirovaniya magmaticheskih porod Sredinno-Atlanticheskogo hrebta po geologicheskim i radiologicheskim dannym. Regional'naya geologiya i metallogeniya. 2012. 50. S. 28—36.

18. Encyclopedia of Volcanoes. Ed. H. Sigurdsson. Academic press. San Diego, San Francisco, New York, Boston, London, Sydney, Toronto. 2000. 1442 p.

19. International Seismological Centre (20XX). On-line Bulletin. URL: https://doi.org/10.31905/D808B830

20. Puga E., Fanning, C.; Nieto, J. Diaz F. Recristallization textures in zircon generated by ocean-floor and eclogite-facies metamorphism: a cathode-luminescence and U-Pb SHRIMP study, with constraints from REE elements. The Canadian Mineralogist. 2005. V. 43. P. 183—202. https://doi.org/10.2113/gscanmin.43.1.183

PDF

English