А. Klimchouk. Development of the deepest karst systems and submarine discharge of the Arabika massif (Western Caucasus): the role of the late miocene regression of Eastern Paratethys

English

https://doi.org/10.15407/gpimo2018.01.058

Geology and Mineral Resources of World Ocean 2018, 14 (1): 58-82

А. Klimchouk

Institute of Geological Sciences NAS of Ukraine, Kyiv

Development of the deepest karst systems and submarine discharge of the Arabika massif (Western Caucasus): the role of the late miocene regression of Eastern Paratethys

The large mountainous massif Arabika in the Western Caucasus borders directly with the sea coast. Karstified limestones that comprise the massif submerge below sea level toward the south-west. Numerous deep caves have been explored in the central high-mountainous part of the massif, two of which have a depth (from the entrances) of more than 2000 m. The unique concentration of superdeep caves and the features of the hydrogeology of the massif (the huge thickness of the vadose zone, active conduit circulation on large depths, the presence of a the low-gradient, high permeability zone in the coastal area and the submarine discharge at the sea, the proven connection of the coastal and submarine springs with the recharge areas in the highland part) testify to the impact on the karst development of a deep sea-level drop in the past. The latest studies on the paleogeography of Eastern Paratethys in the late Miocene time indicate that such a decline in the water level in the Euxine basin took place in the period of about 5.6 to 5.4 million years, with the maximum (up to 500—600 m) corresponding to the glacial peaks of TG12 and TG14 and the  peak  of  the  Messinian  salinity  crisis.  A model is proposed for the evolution of karst systems of the massif taking into account the role of marine regressions and differentiated uplifts in the Pliocene-Quaternary time.

Keywords: Arabika massif, deepest caves, submarine discharge, fluctuations in the level of the Black Sea, Messinian salinity crisis.

References

  1. Astakhov N.E. Strukturnaia heomorfolohyia Hruzyy. Tbylysy: Metsnyereba, 1973. 224 s.
  2. Buachydze Y.M., Melyva A.M. K voprosu razghruzky podzemnykh vod v Chernoe more v raione h. Hahra. Tr. N-y lab. hydroheolohyy y ynzh. heol. Hruz. polytekhn. Yn-ta. 1967. № 3. S. 33—39.
  3. Vakhrushev B.A., Dublianskyi V.N., Amelychev H.N. Karst. Bzybskoho khrebta. Zapadnyi Kavkaz. M.: RUDN. 2001. 166 s.
  4. Hvozdetskyi N.A. Kavkaz. M.: Hos. Yzd-vo heohr. lyt. 1963. 262 s.
  5. Hozhyk P.F. Rehressyvnye etapy v pozdnekainozoiskoi ystoryy Chernoho moria y ykh otrazhenye v razvytyy hydrosety. Yzuchenye heolohycheskoi ystoryy y protsessov sovremennoho osadkoobrazovanyia Chernoho y Baltyiskoho morei. Trudy mezhdunarodnoho sympozyuma. Ch. 1. Kyev: Nauk. dumka. 1984.
  6. Hozhyk P.F., Maslun N.V., Kliushyna H.V., Ivanik O.M. Stratyhrafiia chetvertynnykh vidkladiv Azovo-Chornomorskoho rehionu. Heol. ta kor. kop. Svitovoho okeanu. 2016. № 4(46). S. 5—39.
  7. Kyknadze T.Z. Karst massyva Arabyka. Tbylysy: Metsnyereba. 1972. 245 s.
  8. Kyknadze T.Z. Heolohyia, hydroheolohyia y aktyvnost yzvestniakovoho karsta. Tbylysy: Metsnyereba. 1979. 230 s.
  9. Klymchuk A.B. 1990. Karstovye vodonosnye systemy massyva Arabyka. Peshchery. Problemy yzuchenyia. Mezhvuz. sb. nauchn. trudov. Perm: Permsk. un-t. C. 6—16.
  10. Klymchuk A. 2006. Hlubochaishaia peshchera na Arabyke y evoliutsyia Chernoho moria. Svet. vestn. ukr. speleolohycheskoi assots. 2006. № 2(31). C. 33—36.
  11. Klymchuk A.B., Kasian Yu.M. Raspredelenye temperatury v karstovykh systemakh: dannye po hlubokym peshcheram massyva Arabyka. Heol. zhurn. 2006. № 1. S. 108—115.
  12. Klymchuk A.B., Rohozhnykov V.Ia. O vlyianyy pozdnechetvertychnoho oledenenyia na karsta massyva Arabyka, Kavkaz. Yzvestyia Vses. heohr. ob-va. 1984. 116, № 2. S. 112—119.
  13. Klymchuk A.B., Samokhyn H.V., Kasian Yu.M. Hlubochaishaia peshchera Myra na massyve Arabyka (Zapadnyi Kavkaz) y ee hydroheolohycheskoe y paleoheohrafycheskoe znachenye. Speleo- lohyia y karstolohyia. № 1. 2008. S. 100—104.
  14. Klymchuk A.B., Samokhyn H.V., Chen Kh., Edvards L. Datyrovanye natechnykh otlozhenyi yz hlubokykh chastei hlubochaishei peshchery myra — Krubera (massyv Arabyka, Zapadnyi Kavkaz). Speleolohyia y karstolohyia. 2008. № 1. S. 105—108.
  15. Kohoshvyly L.V. O razvytyy neotektohennoho relefa Hruzyy. Tbylysy: Metsnyereba. 1976. 307 s.
  16. Nevesskaia L.A., Kovalenko E.Y., Beluzhenko E.V. y dr. Obъiasnytelnaia zapyska k unyfytsyrovannoi rehyonalnoi stratyhrafycheskoi skheme neohenovykh otlozhenyi Yuzhnykh rehyonov Evropeiskoi chasty Rossyy. Moskva: Paleontolohycheskyi yn-t RAN. 2004. 83 s.
  17. Ostrovskyi A.B. O stroenyy pereuhlublennykh rechnykh dolyn na Chernomorskom poberezhe Kavkaza. Dokl. AN SSSR. 1966. 167, № 6. S. 13—62.
  18. Ostrovskyi A.B. O prohressyruiushchei yntensyfykatsyy osnovnykh ekzohennykh y endohennykh heolohycheskykh protsessov v pozdnem plyotsene-pleistotsene. Chetvert. heol. y heomorf. Dystantsyonnoe zondyrovanye. M.: Nauka. 1980. S. 68—72.
  19. Popov S.V., Akhmetev M.A, Holovyna L.A. y dr. Rehyoiarusnaia stratyhrafycheskaia shkala neohena yuha Rossyy: sostoianye y perspektyvy obustroistva. M.: HYN RAN. 2013. S. 356— 359.
  20. Popov S.V., Antypov M.P., Zastrozhnov A.S., Kuryna E.E., Pynchuk T.N. Kolebanyia urovnia moria na severnom shelfe Vostochnoho Paratetysa v olyhotsene-neohene. Stratyhrafyia. Heolohycheskaia korreliatsyia. 2010. 18, № 2. S. 99—124.
  21. Rehyonalnaia heomorfolohyia Kavkaza. Pod red. N.V. Dumytrashko. M.: Nauka. 1979. 194 s.
  22. Rostovtseva, Yu.V. 2012. Sedymentohenez v basseinakh sredneho y pozdneho myotsena Vostochnoho Paratetysa (stratotypycheskyi Kerchensko-Tamanskyi rehyon). Avtoref. dyss. dokt. heol.-myn. nauk. M.: MHU. 50 s.
  23. Semenenko V.N., Andreeva-Hryhorovych A.S., Maslun N.V., Liuleva S.A. Priamaia korreliatsyia neohena Vostochnoho Paratetysa s mezhdunarodnoi okeanycheskoi shkaloi po planktonnym mykrofossylyiam. Heol. zhurn. 2009. № 4. S. 9—27.
  24. Semenenko V.N., Liuleva S.A. Hlobalnyi marker hranytsy myotsena-plyotsena Ceratolithus acutus (nannoplankton) v Chernomorskom basseine. Heol. zhurn. 2006. № 2—3. S. 150—159.
  25. Kholodov V. N., Nedumov R. Y. Lytolohyia y heokhymyia sredneho myotsena Vostochnoho Predkavkazia. Nauka. 1981.
  26. Yurovskyi Yu.H. Etiudy o vode. Symferopol: YT «ARYAL». 2014. 112 s.
  27. Audra P., Mocochain L., Camus H. et al. The effect of the Messinian Deep Stage on karst development around the Mediterranean Sea. Examples from Southern France. Geodinamica Acta. 2004. 17. P. 389—400.
  28. Bache F., Gargani J., Suc J.-P. et al. Messinian evaporite deposition during sea level rise in the Gulf of Lions (Western Mediterranean). Marine and Petroleum Geology. 2015. 66. P. 262—277.
  29. Bache F., Popescu S.-M., Rabineau M. et al. A two-step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis. Basin Research. 2012. 24. P. 125—153.
  30. Bakalowicz M., El-Hajj A., El Hakim M. et al. Hydrogeological settings of karst submarine springs and aquifers of the Levantine coast (Syria, Lebanon). Towards their sustainable exploitation. In: Pulido Bosch A., Lopez Geta J.A., Ramos Gonzalez G. (eds). TIAC'07. Coastal Aquifers: Сhallenges and Solutions. Hidrogeologia y aguas subterraneas. 2007. Almeria, Spain: IGME. 23. P. 721—732.
  31. Bakalowicz M. Karst at depth below the sea level around the Mediterranean due to the Messinian crisis of salinity. Hydrogeological consequences and issues. Geol. Belgica. 2014. № 17. P. 96—101.
  32. Barber P.M. Messinian subaerial erosion of the proto-Nile delta. Marine Geology. 1981. №44. P. 253—272.
  33. Bertoni C., Cartwright J.A. Major erosion at the end of the Messinian salinity crisis: evidence from the Levant Basin, eastern Mediterranean. Basin Research. 2007. 1№ 9. P. 1—18.
  34. Blanc P.-L. The opening of the PlioCQuaternary Gibraltar Strait: assessing the size of a cataclysm. Geodinamica Acta. 2002. № 15. 303—317.
  35. Cartwright J.A., Jackson M.P.A. Initiation of gravitational collapse of an evaporite basin margin: the Messinian saline giant, Levant Basin, eastern Mediterranean. Bull. Geol. Soc. Am. 2008. № 120. P. 399—413.
  36. Chumakov I.S. Pliocene and Pleistocene deposits of the Nile valley in Nubia and upper Egypt. In: Ryan F.W.B., Hsh K.J. et al. (eds.). Initial Reports of the Deep Sea Drilling Project, 13. Washington, DC: United States Government Printing Office. 1973. P. 1242—1243.
  37. CIESM. The Messinian Salinity Crisis from Mega-deposits to Microbiology — A Consensus Report. (F.Briand, ed.). CIESM Workshop Monographs. Monaco. 2008.
  38. Clauzon G. Le canyon messinien du Rh^ne: une preuve d?cisive du «Desiccated deep-basin model (Hsu, Cita, Ryan, 1973)». Bull. Soc. GJol. Fr. 1982. № 24. P. 597—610.
  39. Clauzon G., Suc J.-P., Gautier F. et al. Alternate interpretation of the Messinian salinity crisis, controversy resolved? Geology. 1996. № 24. P. 363—366.
  40. de la Vara A., van Baak C.G.C., Marzocchi A. et al. Quantitative analysis of Paratethys sea level change during the Messinian Salinity Crisis. Marine Geology. 2016. № 379. P. 39—51.
  41. D`rfliger N., Fleury P., Bakalowicz M. et al. Specificities of coastal karst aquifers with the hydrogeological characterisation of submarine springs — overview of various examples in the Mediterranean basin. In: Sustainability of the Karst Environment — Dinaric Karst and Other Karst Regions. Paris: UNESCO. 2010. P. 41—48.
  42. Doerfliger N., Ladouche B., Bakalowicz M. et al. Itude du pourtour est de l'?tang de Thau, phase II. SynthJse gJnJrale (Vol. 4). Public report BRGM RP-50789-FR. 2001.
  43. Drooger C.W. (Ed.). Messinian Events in the Mediterranean. Amsterdam: North-Holland Publ. Co. 1973. 272 p.
  44. Druckman Y., Buchbinder B., Martinotti G.M. et al. The buried Afiq Canyon (easternMediterranean, Israel): a case study of a Tertiary submarine canyon exposed in Late Messinian times. Marine Geology. 1995. № 123. P. 167—185.
  45. Fleury P., Bakalowicz M., de Marsily G. Submarine springs and coastal karst aquifers: A review. Journal of Hydrol. 2007. № 339. P. 79—92.
  46. Gillet H., Gilles L., Renault J-P., Dinu C. La stratigraphie oligo-miocene et la surface d'erosion messinienne en mer Noire, stratigraphie sismique haute resolution. Geoscience. 2003. № 335. P. 907—916.
  47. Gillet H., Lericolais G., Rehault J.-P. Messinian event in the Black Sea: Evidence of a Messinian erosional surface. Marine Geology. 2007. № 244. P. 142—165.
  48. Gozhyk P., Semenenko V., Andreeva-Grigorovich A., Maslun N. The correlation of the Neogene of central and Eastern Paratethys segments of Ukraine with the international stratigraphic chart based on planktonic microfossils. Geol. Carpathica. 2015. 66 (3). P. 235—244.
  49. Grothe A., Sangiorgi F., Mulders Y.R. et al. Black Sea desiccation during the Messinian Salinity Crisis: fact or fiction? Geology. 2014. 42 (7). P. 563—566.
  50. Hardie L.A., Lowenstein T.K. Did the Mediterranean Sea dry out during the Miocene? A reassessment of the evaporite evidence from DSDP Legs 13 and 42A cores. Journal of Sedimentary Research. 2004. № 74.  P. 453—461.
  51. Hsh K.J. Origin of Saline Giants: a critical review after the discovery of the Mediterranean evaporite. Earth-Science Reviews. 1972. № 8. P. 371—396.
  52. Hsh K.J., Giovanoli F. Messinian event in the Black Sea. Palaeogeography, Palaeoclimatology, Palaeoecology. 1979. № 29. P. 75—93.
  53. Hsh K. J., Ryan W.B.F., Cita M. B. Late Miocene desiccation of the Mediterranean. Nature. 1973. № 242. P. 240—244.
  54. Just J., Hhbscher C., Betzler C. et al. Erosion of continental margins in the Western Mediterranean due  to  sea-level  stagnancy  during  the  Messinian  Salinity  Crisis.  Geo-Marine Letters. 2011. № 31. P. 51—64.
  55. Klimchouk A. Krubera (Voronja) Cave. In: White W.B., Culver D.C. (eds.). Encyclopedia of Caves. Chennai: Academic Press. 2012. P. 443—450.
  56. Klimchouk A.B., Jablokova N.L. Evidence of hydrological significance of epikarstic zone from study of oxigen isotope composition of water, Arabika massif, Western Caucasus. Proc. of the 10 Int. Congress of Speleology. Vol.III. Budapest. 1990. P. 800—801.
  57. Krezsek C., Schleder Z., Bega Z. et al. The Messinian sea-level fall in the western Black Sea: small or large? Insights from offshore Romania. Petroleum Geosci. 2016. № 22. P. 392—399.
  58. Krijgsman W., Hilgen F.J., Raffi I. et al. Chronology, causes and progression of the Messinian salinity crisis. Nature. 1999. № 400. P. 652—655.
  59. Krijgsman W., Stoica M., Vasiliev I., Popov, V.V. Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth and Planetary Science Letters. 2010. 290. P. 183—191.
  60. Letouzey J., Gonnard R., Montadert L., et al. Black Sea: geological setting and recent deposit distribution from seismic reflection data. Initial Rep. Deep Sea Drill. Proj. 42. 1978. P. 1077— 1084.
  61. Lofi J., Gorini C., BernJ S. et al. Erosional processes and paleo-environmental changes in the Western Gulf of Lions (SW France) during the Messinian Salinity Crisis. Marine Geology. 2005. № 217. P. 1—30.
  62. Lofi J., Sage F., DJverchJre J. Et al. Refining our knowledge of the Messinian salinity crisis records in the offshore domain through multi-site seismic analysis. Bulletin SocietJ GJolgique de France. 2011. № 182. P. 163—180.
  63. Manzi V., Lugli S., Ricci Lucchi F., Roveri M. Deep-water clastic evaporites deposition in the Messinian Adriatic foredeep (northern Apennines, Italy): did the Mediterranean ever dry out? Sedimentology. 2005. № 52. P. 875—902.
  64. Martinez del Olmo,W. Yesos demargen y turbiditicos en el  Messiniense  del  Golfo  de Valencia: Una desecacion imposible. Revista de la Sociedad Geol\gica de Espana. 1996. № 9. P. 67—116.
  65. Mocochain L., Audra P., Clauzon G. et al. The effect of river dynamics induced by the Messinian Salinity Crisis on karst landscape and caves: Example of the Lower Arduche river (mid Rhune valley). Geomorphology. 2009. № 106. P. 46—61.
  66. Mocochain L., Clauzon G., Bigot J., Brunet P. Geodynamic evolution of the peri-Mediterranean karst during the Messinian and the Pliocene?: evidence from the ArdJche and Rhune Valley systems canyons, Southern France. Sedimentary Geology. 2006. 188—189. P. 219—233.
  67. Munteanu I., Matenco L., Dinu C., Cloetingh S. Effects of large sea-level variations in connected basins: the Dacian — Black Sea system of the Eastern Paratethys. Basin Research. 2012. № 24. P. 583—597.
  68. Popescu S.-M. Late Miocene and early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (Leg 42B). Palaeogeography, Palaeoclimatology, Palaeoecology. 2010. № 238. P. 64—77.
  69. Popov S.V., Ilyina L.B., Paramonova N.P. et al. Lithological paleogeographic maps of Paratethys. Courer Forschungsinstitut Senckenberg. 2004. Bd. 250. P. 1—46.
  70. Popov S.V., Goncharova I.A., Kozyrenko T.F. et al. Neogene Stratigraphy and Palaeontology of the  Taman and Kerch Peninsulas (Excursion Guidebook). Moscow: Palaeontological Institute RAS. 1996. 32 p.
  71. Radionova E.P., Golovina L.A., Filippova N.Y. et al. Middle—Upper Miocene stratigraphy of the Taman Peninsula, Eastern Paratethys. Cent. Eur. J. Geosci. 2012. 4(1). P. 188—204.
  72. Rostovtseva Y. V., Rybkina A.I. The Messinian event in the Paratethys: Astronomical tuning of the Black Sea Pontian. Marine and Petroleum Geology. 2017. № 80. P. 321—332.
  73. Roveri M., Bassetti M.A., Ricci Lucchi F. The Mediterranean Messinian Salinity Crisis: an Apennine foredeep perspective. Sedimentary Geology. 2001. 140. P. 201—214.
  74. Roveri M., Flecker R., Krijgsman W. et al. The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Marine Geology. 2014. № 352. P. 25—58.
  75. Roveri M., Gennari R., Lugli S. et al. The Messinian salinity crisis: open problems and possible implications for Mediterranean petroleum systems. Petroleum Geoscience. 2016. № 22. P. 283.
  76. Roveri M., Lugli S., Manzi V., Schreiber B.C. The Messinian Sicilian stratigraphy revisited: toward a new scenario for the Messinian salinity crisis. Terra Nova. 2008. № 20. P. 483—488.
  77. Roveri M., Manzi V., Bergamasco A. et al. Dense shelf water cascading and Messinian canyons: a new scenario for the Mediterranean salinity crisis. American Journal of Science. 2014. № 314. P. 751—784.
  78. Ryan W.B.F. Quantitative evaluation of the depth of the western Mediterranean before, during and after the late Miocene salinity crisis. Sedimentology. 1976. № 23. P. 791—813.
  79. Ryan W.B.F. Decoding the Mediterranean salinity crisis. Sedimentology. 2009. № 56. P. 95—136.
  80. Ryan W.B.F., Stanley D.J., Hersey J.B. et al. The tectonics and geology of the Mediterraneran Sea. In: Maxwell A.E. (Ed.), The Sea. New York: Wiley-Interscience. 1971. P. 387—492.
  81. Smith W.H.F., Sandwell D.T. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science. 1997. 277. P. 1956—1962.
  82. Tari G., Fallah M., Kosi W. et al. Is the impact of the Messinian Salinity Crisis in the Black Sea comparable to that of the Mediterranean? Marine and Petroleum Geology. 2015. № 66. P. 135— 148.
  83. Tari G., Fallah M., Schell C. et al. Why are there no Messinian evaporites in the Black Sea? Petroleum Geoscience. 2016. № 22. P. 381—391.
  84. Tulipano L., Fidelibus D., Panagopoulos A. (Eds.). Groundwater management of coastal karstic aquifers. COST Action 621 Final report. Luxembourg: European Union. 2004.
  85. Vai, G.B., 2016. Over half a century of Messinian salinity crisis. Boletin Geol-gico y Minero. 127, 625—641.
  86. van Baak C.G.C., Radionova E.P., Golovina L.A. et al. Messinian events in the Black Sea. Terra Nova. 2015. № 27. P. 433—441. 
  87. Vasiliev I., Reichart G.J., Krijgsman W. Impact of the Messinian Salinity Crisis on Black Sea hydrology—insights from hydrogen isotopes analysis on biomarkers. Earth and Planetary Science Letters. 2013. № 362. P. 272—282.