V.V. Gordienko, OZONE AND ULTRAVIOLET AT THE EARTH’S ATMOSPHERE

https://doi.org/10.15407/gpimo2022.02.045

V.V. Gordienko, Dr. Sci. (Geol. & Mineral.), Prof., Head of Dept.
S.I. Subbotin Institute of Geophysics of NAS of Ukraine
32, Palladin ave., Kyiv, Ukraine 03142
E-mail: gordienkovadim39@gmail.com ORCID 0000-0001-9430-7801
Scopus author Id = 7102473958
L. Ya. Gordienko, Reseach Scientist
S.I. Subbotin Institute of Geophysics of NAS of Ukraine
32, Palladin ave., Kyiv, Ukraine 03142
E-mail: lyagord@gmail.com ORCID 0000-0002-8067-9732
Ya.A. Goncharova, PhD (Medicine), High-category physician
V.K. Husak Institute of Neorological and Essential Surggery of NAMS of Ukraine
32, Melnykova str., Kyiv, Ukraine, 04050
E-mail: yana.nevro@gmail.com

OZONE AND ULTRAVIOLET AT THE EARTH’S ATMOSPHERE

The appearance of the ozone layer (OL) in the Earth’s atmosphere and the associated processes of attenuation of the ultraviolet (UV) part of solar radiation reaching the surface are considered. It is shown that the role of OL in protecting living organisms from the destructive effects of exposure to the short-wavelength part of the insolation spectrum is immensely exaggerated.

Ozone is generated by UV radiation below the ionosphere when oxygen molecules in the air are divided. When absorbed by UV rays, it is destroyed. Ozone exists for the longest time at minimum temperatures of the atmosphere. This circumstance and the increased density lead to the accumulation of O3 above the tropopause, where the OL is formed. The amount of simultaneously existing gas is extremely insignificant — about 10⁻⁶ air. It is this circumstance that makes it possible to estimate its contribution to the absorption of UV rays as vanishingly small. Compared with it, the scattering of rays by air molecules is incomparably more effective, although each single act of absorption of the middle part of the ultraviolet is several times greater than a single result of scattering. One can agree with the idea of the elimination of ozone molecules by reaction with freons and other gases containing halogens, including those of volcanic origin. It is also possible that it interacts with hydrogen, but H2 rather arising in the atmosphere, and not in the bowels of the Earth. But the processes of changing the OL, including the periodic formation of «ozone holes», do not pose any danger and are explained by natural phenomena, and not by human activity. A very expensive campaign to save the layer makes no sense. On the other hand, ground5level ozone concentration increases over time precisely under the influence of industrial emissions. In the cities of developed countries, the content of this poisonous gas already often exceeds permissible levels and it is time to take up more effective counteraction to its accumulation.

Key words: ozone layer, ultraviolet radiation, oxygen, hydrogen.

References

1.   Bogdanov YU. A., Gurvich E.G., Lein A.YU. i dr. Gidrotermal'nye rudoproyavleniya polej Logacheva i Rejnbou (Sredinno-Atlanticheskij hrebet) — novyj tip gidrotermal'nyh otlozhenij okeanskih riftov. Rossijskij zhurnal nauk o Zemle. 2000. 2, № 4.

2.   Vozdejstvie ozona na organizm, bakterii i virusy. Portal med. centra lecheniya onk. i hron. zabol. akademika RAEN Malenkova A.G., Moskva, 2010.

3.   Vojtov G.I. O himicheskom sostave gazov Krivogo Roga. Geohimiya. 1971. № 11. S. 1324— 1331.

4.   Vojtov G.I. Gazovoe dyhanie Zemli. Priroda. 1975. № 3. S. 91—98. https://doi.org/10.1093/brain/98.1.91

5.   Vojtov GI. Himizm i masshtaby sovremennogo potoka prirodnyh gazov v razlichnyh geostrukturnyh zonah Zemli. ZHurn. Vses. him. ob-va im D I Mendeleeva. 1986. 31. S. 533—556. https://doi.org/10.4319/lo.1986.31.3.0533

6.   Gordienko V.V. O degazacii Zemli. Geofiz. zhurnal. 2019. № 3. S.18—45.

7.   Gordienko V.V. O cirkulyacii vodoroda v atmosfere i zemnoj kore. Geofiz. zhurnal. 2021. № 5. C. 35—59.

8.   Druz'yak N.G. Kak prodlit' bystrotechnuyu zhizn'. URL: http://www.telenir.net/alternativnaja_medicina/kak_prodlit_bystrotechnuy...

9.   Il'yasov SH.A. Voprosy i otvety ob ozonovom sloe. Bishkek, 2008. 112 s.

10. Monitoring ozonovogo sloya. Nacional'naya sistema monitoringa okruzhayushchej sredy Respubliki Belarus': rezul'taty nablyudenij, 2013. Red. S.I. Kuz'min. Minsk: Ekologiya, 2014. S. 190—199.

11. Polevanov V.P., Glaz'ev S.YU. Poiski mestorozhdenij prirodnogo vodoroda v Rossii kak osnova vstraivaniya v novyj tekhnologicheskij uklad. Nedropol'zovanie. HKH1 vek. 2020. № 4 (57). S. 12—23.

12. Syvorotkin V.L. Ozonnaya metodika izucheniya vodorodnoj degazacii Zemli. Prostranstvo i vremya. 2013. 4. vyp. 1.

13. Fedorov V.M. Tendencii i prichiny izmenenij klimata Zemli v sovremennuyu epohu: monografiya, elektronnoe izdanie setevogo rasprostraneniya. Moskva: Dobrosvet, 2018.

14. CHugunov N.I. Ozonovyj sloj i mif ob opasnosti iz kosmosa. Himiya i Himiki. 2010. № 1. S. 247—252.

15. Ekologiya i ekologicheskaya bezopasnost'. 2002. C. 164—167. URL: http://lib4all.ru/base/B1836/ B1836Part385167.php

16. Driscoll C. Solar UV trends and distributions. Natl Radiat Prot Board Bull. 1992. 137. P. 7—13.

17. Ehhalt D., Rohber F. The tropospheric cycle of H₂: a critical review. Tellus B: Chemical and Physical Meteoroljgy. 2009. 61, 3. P. 500—535. https://doi.org/10.1111/j.160050889.2009.00416.x

18. Environmental Health Criteria 160. Ultraviolet radiation. World Health Organization. Geneva. 1994. 353 p.

19. Farman J., Gardiner B., Shanklin D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature. 1985. 315. P. 207—210. https://doi.org/10.1038/315207a0

20. Gordienko V. From hypothesis to geological theory. NCGT Journal. 2020. 3. P. 217—230.

21. Holland H., Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta. 2002. 6. P. 3811—3826. https://doi.org/10.1016/S0016-7037(02)00950-X

22. Holloway J., O’Day P. Production of CO2 and H₂ by Diking-Eruptive Events at Mid-Ocean Ridges: Implications for Abiotic Organic Synthesis and Global Geochemical Cycling. Int Geol. Rev. 2000. 42. R. 673—683. https://doi.org/10.1080/00206810009465105

23. Lilley M., de Angelis M., Gordon L. CH₄, H₂, CO and N₂O in submarine hydrothermal vent waters. Nature. 1982. 300, P. 48—50. https://doi.org/10.1038/300048a0

24. Lin L., Hall J., Lippmann-Pirke J. et al. Radiolytic H₂ in continental crust: Nuclear power for deep subsurface microbial communities. Geoch. Geoph. Geosys. 2005. 6. P. 3—13. https://doi.org/10.1029/2004GC000907

25. Novelli P., Lang, P.,Masarie, K. et al., Molecular hydrogen in the troposphere: global distribution and budget. J. Geophys. Res. 1999. 104. P. 30427— 30444. https://doi.org/10.1029/1999JD900788

26. Osso A. The evolution of the Brewer-Dobson circulation and the ozone layer during the last three decades. Thesis. doct. phil. Barselona. 2014. 104 p.

27. Pieterse G. Modelling the global tropospheric molecular hydrogen cycle. Netherlands. 2012. 198.

28. Pieterse G., Krol M., Batenburg A., et al. Global modelling of H2 mixing ratios and isotopic compositions with the TM5 model. Atmos. Chem. Phys. 2011. 11(14). P. 7001—7026. https://doi.org/10.5194/acp-11-7001-2011

29. Sleep N., Bird D. Niches of the pre-photosynthetic biosphere and geologic preservation of Earth’s earliest ecology. Geobiology. 2007. 5. P. 101—117. https://doi.org/10.1111/j.1472-4669.2007.00105.x

30. Welhan J., Grain H. Methane and hydrogen in East Pacific rise hydrothermal fluids. Geophys. Res. Letters. 1979. 6, 11. P. 829—831. https://doi.org/10.1029/GL006i011p00829

31. Worman S., Pratson L., Karson J., et al. Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere. Geophys Res Lett. 2016. 43. R. 6435—6443. https://doi.org/10.1002/2016GL069066

32. Xiao X., Prinn, R., Simmonds, P., et al. Optimal estimation of the soil uptake of molecular hydrogen from the Advanced Global Atmospheric Gases Experiments and other measurements. J. Geophys. Res. 2007. 112, D07303, https://doi.org/10.1029/2006JD007241.

33. Zgonnik V. The occurrence and geoscience of natural hydrogen: A comprehensive review. Journal Pre-proof. Earth-Science Reviews.2020. https://doi.org/10.1016/j.earscirev.2020.103140

PDF

English