https://doi.org/10.15407/gpimo2021.04.021
S.V. Goshovskyi, Doctor of Technical Sciences, Leading Researcher
State Institution «Scientific Hydrophysical Center of the NAS of Ukraine»
Academician Glushkov Ave., 42, Kyiv, Ukraine
E-mail: oceanjournal@ukr.net
ORCID 0000-0002-8312-6244
O.V. Zurian, PhD, Senior Researcher
Institute of Renewable Energy of the NAS of Ukraine
20-А, Hnat Khotkevich st., Kyiv, Ukraine
E-mail: alexey_zuryan@ukr.net
ORCID 0000-0002-2391-1611
THE CONTRIBUTION OF HYDROTHERMAL «SMOKERS», MUD VOLCANOES AND GAS SEEPS TO THE EARTH’S HEAT EFFECT
The problem of increasing the concentration in the atmosphere of one of the dangerous heat gases - methane, the main component of natural gas. Many countries, especially the developed world, are now experiencing a trend towards tougher heat gas emissions and growing interest in low-carbon technologies, including the introduction of sustainable development, energy efficiency and the development of technologies to reduce heat gas emissions. The main natural and anthropogenic sources of methane emissions are given. The analysis of the ratio of anthropogenic and natural methane emissions was performed, the ratio of different emission sources was estimated. The focus is on total methane emissions in the atmosphere and increasing methane concentrations in recent years. It is scientifically substan@ tiated that one of the sources of degassing of the Earth is the leakage of methane from the seabed of the world’s oceans to the water surface. The main sources of methane emissions from the seabed have been identified. These include: mud volcanoes; macro- and micro-impregnations, geothermal underwater springs and igneous volcanoes (smokers). The literature data on various approaches used to study the formation of methane flows and estimate its global emissions by different geological sources are summarized and analyzed. The ratio of CH4 emissions to terrestrial and marine geological sources has been established. Factors influencing methane emissions from geological sources are substantiated. Possible ways to reduce emissions of geological origin into the atmosphere are suggested. It is concluded that further research on the development of methodological and technical means of collecting, transporting and storing methane from offshore unconventional hydrocarbon deposits is promising.
Keywords: methane, methane emissions, low-carbon technologies, degassing of the Earth.
References
1. Bazhin N.M. Metan v atmosfere. Sorosovskij obrazovatel'nyj zhurnal, 2000, 6. № 3. S. 52—57.
2. Bazhin N.M. Metan v okruzhayushchej srede. Analit. obzor. Ser. Ekologiya. Sib. otd. RAN. Novosibirsk: GPNTB SO RAN, 2010. Vyp. 93. 56 s.
3. Balakin V.A., Guliev I.S., Fejzullaev A.A. Opyt eksperimental'nogo izucheniya uglevodorodnogo dyhaniya stratosfery YUzhno-Kaspijskoj vpadiny i obramlyayushchih gornyh sistem s pomoshch'yu lazernogo analizatora «Iskatel'-2». DAN SSSR. 1981. 260. № 1. S. 154—156.
4. Vojtov G.I. O himicheskoj i izotopno-uglerodnoj nestabil'nostyah svobodnyh gazov (gazovyh struj) v Hibinah. Geohimiya. 1991. № 6. S. 769—780.
5. Gar'kusha D.N., Fyodorov YU.A. Global'naya emissiya metana geologicheskimi istochnikami. Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. 2019. № 3 (81). S. 37—51. https://doi.org/10.23670/IRJ.2019.81.3.006.
6. Goshovskij S.V., Zur'yan A.V. Razrabotka gaza metana iz sipov, gryazevyh vulkanov i morskih mestorozhdenij gazogidratov. Geol. i polezn. iskop. Mirovogo okeana. 2018. № 3. S. 22—36. https://doi.org/10.15407/gpimo2018.03.022.
7. Goshovs'kij S.V., Zur’yan O.V. Gazogіdrati — іstorіya vіdkrittya. Do 50-rіchchya vіdkrittya vlastivostі prirodnih gazіv utvoryuvati pokladi v zemnіj korі u tverdomu gazogіdratnomu stanі. Mіn. resursi Ukraїni. 2019. № 1. S. 45—49. https://doi.org/10.31996/mru.2019.1.45-49.
8. Kiselev A. A., Karol' I. L. S metanom po zhizni. Sankt-Peterburg: Glavnaya geofizicheskaya observatoriya im. A. I. Voejkova. 2019. 73 s.
9. Rol' metana v izmenenii klimata. Pod red. A.G. Ishkova. Nepravitel'stvennyj ekologicheskij fond imeni V.I. Vernadskogo. NIIPE. 2018. 133 s.
10. SHnyukov E. F., Starostenko V. I., Kobolev V. P. Gazogidratonosnost' donnyh otlozhenij CHernogo morya. Geofiz. zhurnal. 2006. 28. № 6. S. 29—38.
11. SHnyukov E.F., Kobolev V.P., Goshovskij S.V. Dorozhnaya karta osvoeniya chernomorskih gazogidratov metana v Ukraine. Geol. і korisn. kopal. Svіtovogo okeanu. 2018. 14, № 3. S. 5—21. https://doi.org/10.15407/gpimo2018.03.005.
12. YAsamanov N. A. Endogennaya aktivnost' Zemli i global'noe poteplenie. Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2004. № 5. C. 439—446.
13. Dimitrov L.I. Mud volcanoes — the most important pathway for degassing deeply buried sediments. Earth — Science Reviews. 2002. Vol. 59(1—4). P. 49—76. https://doi.org/10.1016/S0012-8252(02)00069-7
14. Methane and Nitrous Oxide Emissions from Natural Sources. U.S. Environmental Protection Agency Office of Atmospheric Programs, Washington, DC, USA. 2010. 194 р.
15. Etiope G., Milkov A., Derbyshire E. Did geologic emissions of methane play any role in Quaternary climate change? Global and Planetary Change. 2008. 22. № 1—2. P. 79—88. https://doi.org/10.1016/j.gloplacha.2007.08.008
16. Etiope G., Martinelli G., Caracausi A., Italiano F. Methane seeps and mud volcanoes in Italy: Gas origin, fractionation and emission to the atmosphere. Geophysical Research Letters. 2007. 34. № 14. L 14303. https://doi.org/10.1029/2007GL030341
17. Etiope G. Mud volcanoes and microseepage: The forgotten geophysical components of atmospheric methane budget. Annals of Geophysics. 2005. 48. № 1. P. 1—7. https://doi.org/10.4401/ag-3175
18. Etiope G. New directions: GEM — Geologic emissions of methane, the missing source in the atmospheric methane budget. Atmospheric Environment. 2004. 38. № 19. P. 3099—3100. https://doi.org/10.1016/j.atmosenv.2004.04.002
19. Etiope G., Lassey K.R., Klusman R., Boschi E. Re-appraisal of the fossil methane budget and related emission from geologic sources. Geophysical Research Letters. 2008. 35. P. 1—5. https://doi.org/10.1029/2008GL033623
20. Etiope G., Feyzullayev A., Baciu C. Terrestrial methane seeps and mud volcanoes: A global perspective of gas origin. Marine Petroleum Geology. 2009. 26. № 3. P. 333—344. https://doi.org/10.1016/j.marpetgeo.2008.03.001
21. Goshovskyi S.V., Zurian O.V Gas hydrate deposits: formation, exploration and development. Geology and Mineral Resources of World Ocean. 2017. № 4. Р. 65—78. https://doi.org/10.15407/gpimo2017.04.065.
22. Goshovskyi S.V., Zurian O.V. Methods and technologies for the extraction of methane gas from aquatic gas hydrate formations. Mineralny resursy Ukrainy. 2018. № 4. С. 26—31. https://doi.org/10.31996/mru.2018.4.26—31.
23. Hein R., Crutzen P.J., Heimann M. An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochemical Cycles. 1997. 11. № 1. Р. 43—76. https://doi.org/10.1029/96GB03043
24. Houweling S., Kaminski T., Dentener F., Lelieveld J., Heimann M. Inverse modeling of methane sources and sinks using the adjoint of a global transport model. Journal of Geophysical Research-Atmospheres. 1999. 104 (D21). P. 26137—26160. https://doi.org/10.1029/1999JD900428
25. Hovland M., Judd A. G., Burke R.A. The global flux of methane from shallow submarine sediments. Chemosphere. 1993. 26 (1—4). P. 559—578. https://doi.org/10.1016/0045-6535(93)90442-8
26. Judd A. G. Natural seabed gas seeps as sources of atmospheric methane. Environmental Geology. 2004. 46. № 8. P. 988—996. https://doi.org/10.1007/s00254-004-1083-3
27. Judd A.G., Hovland M., Dimitrov L.I., Gil S.G., Jukes V. The geological methane budget at continental margins and its influence on climate change. Geofluids. 2002. 2. № 2. P. 109—126. https://doi.org/10.1046/j.1468-8123.2002.00027.x
28. Kvenvolden K.A., Rogers B.W. Gaia’s breath. Global methane exhalations. Marine and Petroleum Geology. 2005. 22. № 4. P. 579—590. https://doi.org/10.1016/j.marpetgeo.2004.08.004
29. Kvenvolden K., Loreneson T.D., Reeburgh W.S. Attention turns to naturally occurring methane seepage. Eos Trans. AGU. 2001. Vol. 82 (40). P. 457—458. https://doi.org/10.1029/01EO00275
30. Lacroix A.V. Unaccounted-for sources of fossil and isotopically-enriched methane and their contribution to the emissions inventory: A review and synthesis. Chemosphere. 1993. 26. P. 507—557. https://doi.org/10.1016/0045-6535(93)90441-7
31. MacDonald I.R., Leifer I., Sassen R., Stine P., Mitchell R., Guinasso N. Transfer of hydrocarbons from natural seeps to the water column and atmosphere. Geofluids. 2002. 2. № 2. P. 95—107.
32. Milkov A.V., Sassen R., Apanasovich T.V., Dadashev F.G. Global gas flux from mud volcanoes: A significant source of fossil methane in the atmosphere and the ocean. Geophysical Research Letters. 2003. 30. № 2. P. 1037.
33. Milkov A.V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology. 2000. Vol. 167 (1—2). P. 29—42.
34. Rahmstorf S. A semi-empirical approach to projecting future sea-level rise. Science. 2007. 315. P. 368—370.