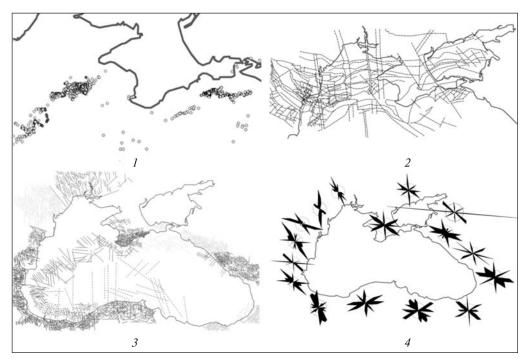
## Научное сообщение

## И.Э. Ломакин, Н.В. Шафранская, В.В. Кочелаб

Отделение морской геологии и осадочного рудообразования НАН Украины, Киев

## ПРОСТРАНСТВЕННАЯ КОМПЛЕКСНАЯ БАЗА ДАННЫХ КАК ОСНОВА ИЗУЧЕНИЯ ЧЕРНОМОРСКОГО РЕГИОНА


Более чем за два века интенсивного изучения Северного Причерноморья накоплены огромные объемы качественных материалов геоморфологических, тектонических, геофизических, стратиграфических и вещественных исследований. Массивы имеющейся информации выходят за пределы возможностей традиционных методов ее обработки [2—4, 10, 14, 15].

В условиях отсутствия средств на реализацию задач нового глубокого и планомерного изучения Причерноморья лишь новейшие компьютерные технологии дают возможности объединения и всестороннего анализа объемных массивов разрозненной информации [12—13]. Сегодня становится особо актуальной реализация профессионального опыта и научного потенциала сотрудников научно-исследовательских организаций и, прежде всего, Национальной Академии наук.

Конструктивно организованные базы данных разного геологического содержания дают возможность использования всей имеющейся первичной (фактической) и производной (в частности, картографической) геологической информации по территории региона, привлечения новейших данных, полученных в процессе исследований [1, 8, 9], систематизации и первичного анализа информации, применения широкого спектра удобных инструментов геоинформационных систем (ГИС) для решения поставленных задач [6, 7, 12, 13]. При этом существует возможность оперативного и практически безграничного пополнения созданных баз данных, сопоставления и корреляции геологических параметров, отображенных в разных уровнях предложенной модели.

Для Черноморского региона в основу модели положен большой объем ретроспективных и новейших картографических и фактических материалов, полученных в процессе многолетних

© И.Э. ЛОМАКИН, Н.В. ШАФРАНСКАЯ, В.В. КОЧЕЛАБ, 2015



Фрагменты ГИС-программы: I — газовые сипы и грязевые вулканы [2, 5, 10]; 2 — разломы Добруджи и Одесской области по фондовым материалам ПричерноморДРГП [11, 14]; 3 — линеаменты Причерноморья [15], 4 — розы-диаграммы ориентировки реальных разломов и линеаментов Причерноморья (построено авторами по компилятивным материалам и данным обработки спутниковых наблюдений)

исследований сотрудниками Отделения морской геологии и осадочного рудообразования Национальной академии наук Украины под руководством академика НАН Украины Е.Ф. Шнюкова. Проект создан в ГИС-среде в реальной системе координат, которая отвечает проекции, оптимальной для данной территории. Это позволяет легко совмещать различные типы информации, например, накладывать на реальный рельеф геофизические аномалии, зоны разломов, литологические и геохимические характеристики разновозрастных пород, поля развития морских и аллювиальных отложений, несущих россыпи и т.д. В отдельных слоях отражается положение газовых факелов и сипов, нефтепроявлений, грязевых вулканов [2, 5, 7, 10].

Данные из разных источников приводятся к избранной проекции и объединяются между собой. На каждом этапе анализа существует возможность выделения слоев с определенной информацией для дальнейшей обработки.

Проект содержит разнообразную, в основном геолого-структурную, информацию, сгруппированную в разные уровни, которые, в свою очередь, могут быть более мелко дифференцированы (рис.). Это дает возможность сопоставлять проявления процессов, описанных разными авторами на разном материале. Отдельно в базу данных включаются слои, которые содержат информацию о разломах и линеаментах разного порядка [4, 6, 7, 11, 15]. Кроме того, в этом проекте будет визуализирована база данных по грязевым вулканам и газовым факелам (метано-

вым сипам) Черного моря [2, 5, 10]. Каждый слой характеризуется таблицей атрибутивной информации, которая содержит дополнительные данные об объектах. Для разломов это могут быть углы падения, кинематические характеристики; для газовых факелов — глубина выявления, высота факела и другие особенности.

В процессе работы проект постепенно пополняется разнообразной информацией из разных источников на разных масштабных уровнях (от 1:2500000 к 1:500000). Так, к пространственной базе данных добавлялись слои, которые содержат, например, характеристики разломных и линеаментных структур как всего Черноморского региона, так и его частей — северо-западного шельфа, Добруджи, Преддобруджского прогиба, Крыма и т. п. (рисунок). Пополнение соответствующей информацией продолжается и зависит от конкретных задач, которые выполняются на базе данного ГИС-проекта.

Важно, что применение ГИС-модели территории исследований дает возможность анализировать, сочетать, сравнивать как в визуально-аналитическом, так и в автоматическом режиме разные геологические характеристики региона, которые представляют отдельные слои проекта. Так например, ГИС-инструментарий и специально созданные программные модули позволяют анализировать генеральные векторы ориентирования топо- и тектоно-линеаментов и локализацию полезных ископаемых.

Примерами использования новейших ГИС-технологий является ряд работ по анализу и обработке картографических и фактических материалов относительно отдельных объектов и территорий Черноморского региона [6, 7, 13]. Сегодня созданный ГИС-проект используется при выполнении тематического плана ОМГОР НАН Украины. На его базе планируется осуществлять, прежде всего, анализ тектонических структур и линеаментов всего Черноморского региона, а также структурно-тектонических факторов локализации полезных ископаемых. На ранних этапах реализации проекта уже были выявлены и проанализированы основные параметры тектоно-линеаментных систем региона. Установлено, что пространственная ориентация и мощность проявления разных веток реальных диаграмм является важным критерием выявления индивидуальных черт каждого конкретного района обширной территории. В результате применения статистических методов для обработки параметров ориентировки линеаментов создается объективная модель геологического строения региона.

В дальнейшем планируется периодически публиковать отдельные разделы и части базы данных для их использования широким кругом специалистов.

На основе созданной комплексной пространственной базы данных в дальнейшем планируется изучать особенности ориентировки тектоно-линеаментных систем отдельных районов Причерноморья и выявлять закономерности распространения здесь полезных ископаемых.

## СПИСОК ЛИТЕРАТУРЫ

- 1. *Бондарев И.П., Ломакин И.Э.* Переходная зона между шельфом и континентальным склоном северной части Черного моря: ландшафтный подход // Геология и полезные ископаемые мирового океана. 2010. № 3. С. 57—64.
- 2. *Газовые* факелы на дне Черного моря / [Е.Ф. Шнюков, А.А. Пасынков, С.А. Клещенко и др.] Киев, 1999. 134 с.
- 3. *Геологическая* история Черного моря по результатам глубоководного бурения. М.: Наука, 1980.-202 с.

- 4. *Геотектоника* северного Причерноморья / Отв. ред. И.И. Чебаненко. К.: Наук. думка, 1988. 164 с.
- 5. Грязевые вулканы Черного моря (каталог). Киев: ГНУ ОМГОР, 2014. 259 с.
- 6. Занкевич Б.А., Мельниченко Т.А., Шафранская Н.В. Унаследование структурных планов северо-западного шельфа Черного моря // Геология и полезные ископаемые мирового океана. 2009. № 1. С. 52—62.
- 7. Занкевич Б.А., Шафранская Н.В. Тектоническая позиция зоны газовых факелов северо-западной части Черного моря // Геология и полезные ископаемые мирового океана. 2009.  $N \odot 3$ . С. 35—54.
- 8. Иванов В.Е., Ломакин И.Э. Геологическая позиция и тектоника Ломоносовского палеовулканического массива и Форосского выступа // Геология и полезные ископаемые мирового океана. — 2014. — № 2. — С. 35—51.
- 9. Иванов В.Е., Ломакин И.Э., Кочелаб В.В. Тектонические факторы развития новейших геодинамических процессов Юго-Западного Крыма // Геология и полезные ископаемые Мирового океана. 2014. № 3. С. 61—74.
- 10. *Метановые* сипы в Черном море: средообразующая и экологическая роль / [В.Н. Егоров, Ю.Г. Артемов, С.Б. Гулин] Севастополь: НПЦ «ЭКОСИ-Гидрофизика», 2011. 405 с.
- 11. *Чумак О.М., Какаранза С.Д.* Звіт про виконання тематичних робіт: «Вивчення особливостей глибинної геологічної будови Північночорноморської континентальної окраїни». Одеса, 2007.
- 12. *Шафранська Н.В.* Концепція розломно-блокової тектоніки і структурно-тектонічні фактори мінерагенічного аналізу (на прикладі УЩ і його південного обрамлення): дис. ... доктора геол. наук: 04.00.01 / Шафранська Наталія Василівна. Киев, 2012. 320 с.
- Шафранская Н.В. Методики построения и использования диаграмм в структурно-парагенетическом анализе (на примере вала Андрусова Черноморской впадины) // Геология и полезные ископаемые мирового океана. — 2008. — № 2. — 140—150 с.
- 14. *Biter M., Zina Malita, Diaconescu M., Radulescu F., Nacu V.* Crustal movement and earthquakes distribution in Dobrudja and Black Sea // GEO-ECO-MARINA. 1998. № 3. P. 109—117.
- 15. *Bullettino* di Geofisica. Teorica ed Applicata. [Monograph on the Black Sea]. Trieste: OGS, 1988. Vol. XXX, N. 117—118. 324 p.

Статья поступила 06.01.2015